Attention-Emotion-Enhanced Convolutional LSTM for Sentiment Analysis

计算机科学 情绪分析 人工智能 判决 深度学习 卷积神经网络 特征学习 自然语言处理 特征(语言学) 代表(政治) 背景(考古学) 联营 串联(数学) 机器学习 生物 古生物学 哲学 语言学 数学 组合数学 政治 政治学 法学
作者
Faliang Huang,Xuelong Li,Changan Yuan,Shichao Zhang,Jilian Zhang,Shaojie Qiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4332-4345 被引量:53
标识
DOI:10.1109/tnnls.2021.3056664
摘要

Long short-term memory (LSTM) neural networks and attention mechanism have been widely used in sentiment representation learning and detection of texts. However, most of the existing deep learning models for text sentiment analysis ignore emotion's modulation effect on sentiment feature extraction, and the attention mechanisms of these deep neural network architectures are based on word- or sentence-level abstractions. Ignoring higher level abstractions may pose a negative effect on learning text sentiment features and further degrade sentiment classification performance. To address this issue, in this article, a novel model named AEC-LSTM is proposed for text sentiment detection, which aims to improve the LSTM network by integrating emotional intelligence (EI) and attention mechanism. Specifically, an emotion-enhanced LSTM, named ELSTM, is first devised by utilizing EI to improve the feature learning ability of LSTM networks, which accomplishes its emotion modulation of learning system via the proposed emotion modulator and emotion estimator. In order to better capture various structure patterns in text sequence, ELSTM is further integrated with other operations, including convolution, pooling, and concatenation. Then, topic-level attention mechanism is proposed to adaptively adjust the weight of text hidden representation. With the introduction of EI and attention mechanism, sentiment representation and classification can be more effectively achieved by utilizing sentiment semantic information hidden in text topic and context. Experiments on real-world data sets show that our approach can improve sentiment classification performance effectively and outperform state-of-the-art deep learning-based methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昏睡的蟠桃应助newman采纳,获得50
1秒前
1秒前
2秒前
2秒前
安之完成签到,获得积分10
3秒前
无名的喧嚣完成签到,获得积分10
3秒前
110完成签到 ,获得积分10
3秒前
Ogai完成签到,获得积分10
3秒前
123完成签到,获得积分20
3秒前
dingding完成签到,获得积分10
3秒前
陈仲完成签到,获得积分10
3秒前
3秒前
wocala完成签到,获得积分10
4秒前
JamesPei应助wying采纳,获得30
4秒前
积极松鼠发布了新的文献求助10
4秒前
荔枝发布了新的文献求助30
5秒前
547发布了新的文献求助30
6秒前
Orange应助苗觉觉采纳,获得10
6秒前
mly发布了新的文献求助10
6秒前
zhangjian发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
41应助FFSGF采纳,获得10
8秒前
深情未来完成签到,获得积分10
9秒前
壮观不斜发布了新的文献求助10
9秒前
555完成签到,获得积分20
9秒前
villanel发布了新的文献求助10
9秒前
10秒前
15327432191完成签到 ,获得积分10
10秒前
完美世界应助BANG采纳,获得10
10秒前
Orange应助歆琉采纳,获得10
11秒前
Yuying驳回了泥泥应助
12秒前
Lucas应助鸽子采纳,获得10
12秒前
大模型应助鸽子采纳,获得10
12秒前
12秒前
13秒前
13秒前
深情安青应助Chenjunxian采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406