Surface modification of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane in supercritical carbon dioxide for enhancing interfacial strength

材料科学 润湿 复合材料 接触角 X射线光电子能谱 超临界二氧化碳 环氧树脂 纤维 超临界流体 极限抗拉强度 扫描电子显微镜 表面改性 复合数 表面粗糙度 粘附 化学工程 化学 有机化学 工程类
作者
Juan Zeng,Haijuan Kong,Xue Du,Qian Xu,Feiyan Jiang,B. Li,Muhuo Yu
出处
期刊:Materials Today Chemistry [Elsevier]
卷期号:20: 100426-100426 被引量:9
标识
DOI:10.1016/j.mtchem.2021.100426
摘要

PBO fiber is one of the most promising reinforcements in resin matrix composite because of its excellent mechanical properties. However, the inert and smooth surfaces make it the poor interface adhesion with resin matrix, which seriously limits the application in composites. In this article, we report a method to modify the surface of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane(BisAPAF)in supercritical CO2 to enhance interfacial properties. Chemical structures, surface elemental composition and functional groups, and surface morphology were characterized by FT-IR spectrometer, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The mechanical properties of the samples were tested by a tensile tester. Static contact angle and microdebonding tests were used to characterize the wetting ability and interfacial shear strength (IFSS) of the fiber and epoxy resin. The results showed that the BisAPAF could be solved in scCO2 and introduced more groups, –NH2, –OH, and –CF3 on the fiber surface, resulting in the mechanical properties and the wettability of PBO fiber slightly improved. Moreover, the fiber surface roughness was also increased obviously. The IFSS between the modified PBO fiber and epoxy resin increased from 8.18 MPa to 31.4 MPa when the treating pressure was 14 MPa. In general, the method to modify PBO fibers surface using BisAPAF in scCO2 can effectively improve their interfacial properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强水杯发布了新的文献求助60
刚刚
2秒前
善学以致用应助oue采纳,获得10
2秒前
2秒前
2秒前
HCT完成签到,获得积分10
3秒前
3秒前
3秒前
limerence发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助玥越采纳,获得10
4秒前
1chen完成签到 ,获得积分10
4秒前
5秒前
刘霆勋发布了新的文献求助10
5秒前
哪位完成签到,获得积分10
5秒前
风吹麦田应助fish采纳,获得100
6秒前
fnuew发布了新的文献求助10
6秒前
JIANGSHUI发布了新的文献求助10
7秒前
林深完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
山雷发布了新的文献求助10
7秒前
Sylvia完成签到,获得积分10
8秒前
struggle完成签到,获得积分20
8秒前
科研小尹发布了新的文献求助10
8秒前
齐天大圣完成签到,获得积分10
9秒前
禹宛白发布了新的文献求助10
9秒前
jhonnyhuang发布了新的文献求助10
10秒前
10秒前
JIANGSHUI完成签到,获得积分10
11秒前
万金油完成签到 ,获得积分10
11秒前
老王爱学习完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802