ZeRO: Memory optimizations Toward Training Trillion Parameter Models

计算机科学 加速 并行计算 零(语言学) 计算 数据并行性 计算机工程 比例(比率) 吞吐量 平行性(语法) 算法 哲学 语言学 物理 量子力学 电信 无线
作者
Samyam Rajbhandari,Jeff Rasley,Olatunji Ruwase,Yuxiong He
标识
DOI:10.1109/sc41405.2020.00024
摘要

Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data- and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware. We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8. 3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create Turing-NLG, the world's largest language model at the time (17B parameters) with record breaking accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孝顺的觅风完成签到 ,获得积分10
刚刚
1秒前
Cyuan发布了新的文献求助10
1秒前
JRZ完成签到,获得积分10
2秒前
2秒前
不想晚睡完成签到,获得积分10
2秒前
3秒前
Sylvia发布了新的文献求助50
3秒前
Lia_Yee完成签到,获得积分10
3秒前
4秒前
asdfqwer发布了新的文献求助10
4秒前
可爱的稚晴完成签到,获得积分20
4秒前
进击的PhD完成签到,获得积分10
5秒前
6秒前
单纯无声完成签到 ,获得积分10
6秒前
8秒前
西西弗斯完成签到,获得积分10
10秒前
李卓航发布了新的文献求助10
12秒前
领导范儿应助甜野采纳,获得10
12秒前
12秒前
14秒前
16秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
好好应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716