清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ZeRO: Memory optimizations Toward Training Trillion Parameter Models

计算机科学 加速 并行计算 零(语言学) 计算 数据并行性 计算机工程 比例(比率) 吞吐量 平行性(语法) 算法 哲学 语言学 物理 量子力学 电信 无线
作者
Samyam Rajbhandari,Jeff Rasley,Olatunji Ruwase,Yuxiong He
标识
DOI:10.1109/sc41405.2020.00024
摘要

Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data- and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware. We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8. 3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create Turing-NLG, the world's largest language model at the time (17B parameters) with record breaking accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我独舞完成签到 ,获得积分10
4秒前
5秒前
7秒前
可耐的万言完成签到 ,获得积分10
7秒前
sidashu发布了新的文献求助10
10秒前
小鱼女侠发布了新的文献求助10
11秒前
善学以致用应助摆渡人采纳,获得10
11秒前
Edward发布了新的文献求助10
12秒前
Hello应助胡泳旭采纳,获得10
13秒前
妮妮完成签到 ,获得积分10
15秒前
fuws完成签到 ,获得积分10
16秒前
研友_LmVygn完成签到 ,获得积分10
20秒前
21秒前
Aiden完成签到 ,获得积分10
23秒前
安静的ky完成签到,获得积分10
24秒前
无花果应助sidashu采纳,获得10
32秒前
结实凌瑶完成签到 ,获得积分10
40秒前
57秒前
gujianhua发布了新的文献求助10
58秒前
摆渡人发布了新的文献求助10
1分钟前
沐浠完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
宇文鹏煊完成签到 ,获得积分10
1分钟前
1分钟前
gujianhua完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
科研通AI6应助老10采纳,获得10
1分钟前
shadow完成签到,获得积分10
1分钟前
芬芬完成签到 ,获得积分10
1分钟前
自由盼夏完成签到 ,获得积分10
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
哥哥发布了新的文献求助10
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
摆渡人完成签到,获得积分10
1分钟前
启程完成签到 ,获得积分10
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551