ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1708
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leona666发布了新的文献求助100
1秒前
上官若男应助拼搏的从雪采纳,获得10
1秒前
MMM发布了新的文献求助10
1秒前
忧心的捕完成签到,获得积分10
1秒前
自由妙竹完成签到 ,获得积分10
1秒前
kurumi0601完成签到,获得积分10
1秒前
1秒前
端庄千琴完成签到,获得积分10
1秒前
rorraine_xu完成签到,获得积分10
1秒前
在水一方应助江河JT采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
fengjingjun完成签到,获得积分10
2秒前
2秒前
3秒前
0994完成签到 ,获得积分10
3秒前
852应助林加雄采纳,获得10
3秒前
4秒前
Criminology34应助Iris99采纳,获得10
4秒前
5秒前
Owen应助忧心的捕采纳,获得10
5秒前
小二郎应助ZiruiDing采纳,获得10
6秒前
6秒前
6秒前
6秒前
菜菜发布了新的文献求助10
6秒前
Akim应助啊懂采纳,获得10
7秒前
贰拾发布了新的文献求助10
7秒前
亚尔完成签到,获得积分10
7秒前
7秒前
ee发布了新的文献求助10
7秒前
科研通AI6应助棍棍来也采纳,获得10
8秒前
12345678发布了新的文献求助10
8秒前
8秒前
ZeKaWa应助堡主采纳,获得10
8秒前
21发布了新的文献求助10
9秒前
WD完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786