已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1677
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得20
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
hhheke发布了新的文献求助10
2秒前
LPPQBB应助科研通管家采纳,获得50
2秒前
大模型应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得20
3秒前
5秒前
5秒前
5秒前
顾矜应助井盖发采纳,获得10
6秒前
冬天里的蝴蝶完成签到,获得积分10
6秒前
木土完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
hamburger完成签到 ,获得积分10
9秒前
aniver发布了新的文献求助10
9秒前
11秒前
xwxw完成签到,获得积分10
12秒前
完美世界应助萱萱采纳,获得10
12秒前
黄毛虎完成签到 ,获得积分0
14秒前
浮游应助taoliu采纳,获得10
15秒前
xwxw发布了新的文献求助10
18秒前
王嘉尔完成签到,获得积分10
18秒前
19秒前
年轻道之关注了科研通微信公众号
19秒前
滴滴答答发布了新的文献求助10
21秒前
科研通AI6应助洞两采纳,获得10
21秒前
王嘉尔发布了新的文献求助10
23秒前
23秒前
星辰大海应助白泽采纳,获得10
24秒前
ZH完成签到 ,获得积分10
25秒前
taoliu完成签到,获得积分10
26秒前
laomuxile发布了新的文献求助80
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356