ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1708
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰鸽舞完成签到 ,获得积分10
刚刚
逆袭者完成签到,获得积分10
刚刚
ash应助airvince采纳,获得50
刚刚
刚刚
恶毒的婆婆完成签到,获得积分10
1秒前
iceeer完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
spencer177完成签到,获得积分10
3秒前
3秒前
关心发布了新的文献求助10
3秒前
4秒前
minkeyantong完成签到 ,获得积分10
4秒前
gyq发布了新的文献求助10
4秒前
藜誌完成签到,获得积分10
4秒前
BDH完成签到,获得积分10
4秒前
进击的PhD给未来EBM的求助进行了留言
4秒前
4秒前
酒巷完成签到,获得积分10
5秒前
5秒前
Richardxuuu发布了新的文献求助10
5秒前
我就是我完成签到,获得积分10
5秒前
魔芋不爽完成签到 ,获得积分10
6秒前
赵Zhao完成签到,获得积分10
6秒前
wenjian完成签到,获得积分10
6秒前
Linzi完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
小陈完成签到,获得积分10
7秒前
明钟达完成签到,获得积分10
8秒前
8秒前
N维完成签到,获得积分10
8秒前
8秒前
allover完成签到,获得积分10
9秒前
海绵宝宝发布了新的文献求助10
9秒前
jim完成签到 ,获得积分10
9秒前
爆杀小白鼠完成签到,获得积分10
9秒前
yangsi完成签到 ,获得积分10
9秒前
weijiechi完成签到,获得积分10
9秒前
危机的夏兰完成签到,获得积分10
9秒前
汉堡包应助saby采纳,获得10
10秒前
充电宝应助CT采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484