ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1330
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
DDDDJ完成签到 ,获得积分10
1秒前
落后的小松鼠完成签到,获得积分10
2秒前
wanci应助巴豆有点妖采纳,获得10
2秒前
zyc发布了新的文献求助10
2秒前
瓜瓜完成签到,获得积分10
2秒前
完美世界应助冰阔落采纳,获得10
3秒前
满满完成签到,获得积分10
6秒前
12334发布了新的文献求助10
6秒前
小二郎应助鲁西西采纳,获得10
7秒前
无风海发布了新的文献求助10
7秒前
轩辕一笑发布了新的文献求助10
7秒前
罗罗完成签到,获得积分10
7秒前
7秒前
9秒前
Asurary完成签到 ,获得积分10
10秒前
liberty完成签到,获得积分10
10秒前
11秒前
11秒前
科研dog完成签到,获得积分10
12秒前
李健应助theverve采纳,获得50
12秒前
乐乐应助zzzz采纳,获得10
12秒前
小妮子完成签到,获得积分10
12秒前
wonwojo完成签到 ,获得积分10
14秒前
小宇子发布了新的文献求助10
14秒前
14秒前
彭于晏应助巴拉巴拉巴采纳,获得10
14秒前
爆米花应助柳易槐采纳,获得10
16秒前
orixero应助顺心的巨人采纳,获得10
18秒前
丘比特应助stayreal采纳,获得10
20秒前
PG完成签到 ,获得积分10
21秒前
阿霏霏完成签到,获得积分10
21秒前
22秒前
22秒前
dopamine发布了新的文献求助10
22秒前
安静的海角完成签到 ,获得积分10
22秒前
乔垣结衣完成签到,获得积分10
23秒前
刘梦婷完成签到,获得积分20
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152