亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1708
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助hoojw采纳,获得10
刚刚
Zhao完成签到 ,获得积分10
1秒前
熊猫完成签到 ,获得积分10
2秒前
lqhccww发布了新的文献求助10
13秒前
研友_8yN60L完成签到,获得积分10
16秒前
ZB完成签到,获得积分10
20秒前
直率无声完成签到,获得积分10
22秒前
开朗满天完成签到,获得积分10
27秒前
深情安青应助lqhccww采纳,获得10
27秒前
牛八先生完成签到,获得积分10
30秒前
lu完成签到,获得积分10
34秒前
侧耳发布了新的文献求助10
36秒前
37秒前
激动的晓筠完成签到 ,获得积分10
37秒前
hh完成签到,获得积分10
38秒前
外向小猫咪完成签到,获得积分10
41秒前
静待花开发布了新的文献求助10
42秒前
文艺的枫叶完成签到 ,获得积分10
50秒前
meow完成签到 ,获得积分10
52秒前
Jerry完成签到 ,获得积分10
54秒前
打打应助121231233采纳,获得10
55秒前
OrangeWang完成签到,获得积分10
57秒前
OrangeWang发布了新的文献求助10
59秒前
orixero应助我去吃饭采纳,获得10
1分钟前
1分钟前
小尾巴完成签到 ,获得积分10
1分钟前
1分钟前
大个应助Nature_Science采纳,获得10
1分钟前
zero完成签到 ,获得积分10
1分钟前
gty完成签到,获得积分10
1分钟前
bob完成签到 ,获得积分10
1分钟前
121231233发布了新的文献求助10
1分钟前
友好白凡发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
英俊的铭应助gty采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866566
捐赠科研通 4706287
什么是DOI,文献DOI怎么找? 2542732
邀请新用户注册赠送积分活动 1508144
关于科研通互助平台的介绍 1472276