ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

计算机科学 分割 人工智能 深度学习 解析 推论 计算机视觉 卷积神经网络 像素 图形 编码器 模式识别(心理学) 理论计算机科学 操作系统
作者
Foivos I. Diakogiannis,François Waldner,Peter Caccetta,Chen Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:162: 94-114 被引量:1708
标识
DOI:10.1016/j.isprsjprs.2020.01.013
摘要

Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. \textcolor{black}{Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture's computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes.} The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9\% over all classes for our best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助heqizheng采纳,获得10
1秒前
Carpe完成签到,获得积分10
1秒前
世界末末日完成签到,获得积分10
1秒前
Owen应助weizijun的BABA采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
XRECP完成签到,获得积分20
7秒前
紫水晶完成签到,获得积分10
7秒前
8秒前
嘻嘻发布了新的文献求助10
8秒前
8秒前
8秒前
Ceceliaqiu发布了新的文献求助10
9秒前
ykkang完成签到,获得积分10
10秒前
10秒前
充电宝应助贾舒涵采纳,获得10
10秒前
风清扬应助Hezhiyong采纳,获得10
10秒前
偷笑的小之完成签到,获得积分10
10秒前
桐桐应助于子杰采纳,获得10
11秒前
英姑应助freedom采纳,获得10
11秒前
DD发布了新的文献求助10
12秒前
12秒前
12秒前
XRECP发布了新的文献求助10
13秒前
李太宇发布了新的文献求助10
13秒前
张曰淼完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
小树有点歪完成签到,获得积分10
14秒前
彭于晏应助Ceceliaqiu采纳,获得10
14秒前
苗浩阳发布了新的文献求助10
15秒前
yyy发布了新的文献求助10
17秒前
zlm发布了新的文献求助10
17秒前
17秒前
18秒前
xiaolei001应助ykkang采纳,获得10
18秒前
美好斓发布了新的文献求助10
18秒前
果酱的奥特曼完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771127
求助须知:如何正确求助?哪些是违规求助? 5589626
关于积分的说明 15426564
捐赠科研通 4904445
什么是DOI,文献DOI怎么找? 2638788
邀请新用户注册赠送积分活动 1586567
关于科研通互助平台的介绍 1541713