Detection of anaemia from retinal fundus images via deep learning

眼底(子宫) 贫血 置信区间 视网膜 医学 接收机工作特性 血红蛋白 人口统计学的 眼科 内科学 社会学 人口学
作者
Akinori Mitani,Abigail E. Huang,Subhashini Venugopalan,Greg S. Corrado,Lily Peng,Dale R. Webster,Naama Hammel,Yun Liu,Avinash V. Varadarajan
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:4 (1): 18-27 被引量:100
标识
DOI:10.1038/s41551-019-0487-z
摘要

Owing to the invasiveness of diagnostic tests for anaemia and the costs associated with screening for it, the condition is often undetected. Here, we show that anaemia can be detected via machine-learning algorithms trained using retinal fundus images, study participant metadata (including race or ethnicity, age, sex and blood pressure) or the combination of both data types (images and study participant metadata). In a validation dataset of 11,388 study participants from the UK Biobank, the metadata-only, fundus-image-only and combined models predicted haemoglobin concentration (in g dl–1) with mean absolute error values of 0.73 (95% confidence interval: 0.72–0.74), 0.67 (0.66–0.68) and 0.63 (0.62–0.64), respectively, and with areas under the receiver operating characteristic curve (AUC) values of 0.74 (0.71–0.76), 0.87 (0.85–0.89) and 0.88 (0.86–0.89), respectively. For 539 study participants with self-reported diabetes, the combined model predicted haemoglobin concentration with a mean absolute error of 0.73 (0.68–0.78) and anaemia an AUC of 0.89 (0.85–0.93). Automated anaemia screening on the basis of fundus images could particularly aid patients with diabetes undergoing regular retinal imaging and for whom anaemia can increase morbidity and mortality risks. Machine-learning algorithms trained with retinal fundus images, with subject metadata or with both data types, predict haemoglobin concentration with mean absolute errors lower than 0.75 g dl–1 and anaemia with areas under the curve in the range of 0.74–0.89.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上完成签到 ,获得积分10
刚刚
飞飞发布了新的文献求助10
刚刚
lee发布了新的文献求助10
刚刚
摸鱼鱼完成签到,获得积分10
1秒前
大模型应助靓丽的采白采纳,获得30
1秒前
bkagyin应助tanglu采纳,获得200
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
害怕的冷菱完成签到,获得积分10
3秒前
冬菊完成签到 ,获得积分10
4秒前
6秒前
超级无敌万能小金毛完成签到,获得积分10
6秒前
7秒前
XWY完成签到,获得积分10
7秒前
桃掉烦恼发布了新的文献求助10
7秒前
7秒前
10秒前
10秒前
11秒前
11秒前
12秒前
gzt完成签到,获得积分10
13秒前
orixero应助苏鱼采纳,获得10
13秒前
金子悠月完成签到,获得积分10
14秒前
14秒前
深情安青应助fmx采纳,获得10
17秒前
17秒前
17秒前
破灭圆舞曲完成签到,获得积分10
18秒前
18秒前
22秒前
22秒前
23秒前
Nn完成签到 ,获得积分10
23秒前
纯牛马完成签到,获得积分10
24秒前
djbj2022完成签到,获得积分10
24秒前
26秒前
26秒前
lyyyyyy完成签到,获得积分10
26秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349