Synthesis and characterization of LiFe1−Mn PO4 (x = 0.25, 0.50, 0.75) lithium ion battery cathode synthesized via a melting process

电化学 阴极 锂(药物) 材料科学 扫描电子显微镜 电池(电) 锂离子电池 表征(材料科学) 水热合成 化学工程 热液循环 纳米技术 电极 化学 复合材料 物理化学 工程类 内分泌学 功率(物理) 物理 医学 量子力学
作者
Elaa Ben Fredj,Steeve Rousselot,Laurence Danis,Thomas Bibienne,M. Gauthier,Guoxian Liang,Mickaël Dollé
出处
期刊:Journal of energy storage [Elsevier]
卷期号:27: 101116-101116 被引量:15
标识
DOI:10.1016/j.est.2019.101116
摘要

Compared to large-scale solid-state and hydrothermal methods, melt synthesis is a simple, fast and low-cost method to synthesize cathode materials with high quality and high electrochemical results. In this paper, melt synthesis is used for the first time to synthesize electrochemically active LiFe1-xMnxPO4 (x = 0.25, 0.50, 0.75) cathode materials with high electrochemical performance. The structure, the morphology and the electrochemical performance of LiFe1-xMnxPO4 materials were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and galvanostatic charge/discharge cycling. The properties of LiFe1-xMnxPO4 materials synthesized by the molten-state process were compared with those of LiFe1-xMnxPO4 materials synthesized by the well-known solid-state process. The obtained results show that molten- and solid-state syntheses provide similar performances in terms of discharge capacity, capacity retention and rate capability, and even better in the case of LiFe0.25Mn0.75PO4 made from melt synthesis (142 mAh g−1 vs. 130 mAh g−1). This paper offers new perspectives for the large-scale production of high potential cathode materials using melting process that could compete with the current synthetic techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助冬瓜炖排骨采纳,获得10
刚刚
1秒前
dyh6802发布了新的文献求助10
1秒前
冷静雅青发布了新的文献求助10
1秒前
CipherSage应助猪猪hero采纳,获得10
2秒前
领导范儿应助不凡采纳,获得30
2秒前
顾矜应助坚定的亦绿采纳,获得10
3秒前
3秒前
yu完成签到,获得积分10
3秒前
Chris完成签到,获得积分10
4秒前
cookie发布了新的文献求助10
5秒前
胖仔完成签到,获得积分10
5秒前
Chan0501完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
duxinyue发布了新的文献求助10
7秒前
汉堡转转转完成签到,获得积分10
8秒前
喵酱发布了新的文献求助30
8秒前
6666完成签到,获得积分10
8秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
9秒前
wjn完成签到,获得积分10
9秒前
10秒前
竹子完成签到,获得积分10
10秒前
MAKEYF完成签到 ,获得积分10
10秒前
11秒前
Owen应助猪猪hero采纳,获得10
11秒前
12秒前
CipherSage应助海棠yiyi采纳,获得50
13秒前
Khr1stINK发布了新的文献求助10
13秒前
13秒前
脑洞疼应助卡卡采纳,获得10
13秒前
13秒前
Rrr发布了新的文献求助10
14秒前
科研通AI5应助zmy采纳,获得10
15秒前
William鉴哲发布了新的文献求助10
15秒前
情怀应助只道寻常采纳,获得10
16秒前
16秒前
cyy完成签到,获得积分20
16秒前
orixero应助小庄采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794