A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification

计算机科学 特征选择 情绪分析 朴素贝叶斯分类器 分类器(UML) 人工智能 贪婪算法 元启发式 机器学习 数据挖掘 模式识别(心理学) 算法 支持向量机
作者
Osman Gökalp,Erdal Taşçı,Aybars Uğur
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:146: 113176-113176 被引量:99
标识
DOI:10.1016/j.eswa.2020.113176
摘要

In recent years, sentiment analysis is becoming more and more important as the number of digital text resources increases in parallel with the development of information technology. Feature selection is a crucial sub-stage for the sentiment analysis as it can improve the overall predictive performance of a classifier while reducing the dimensionality of a problem. In this study, we propose a novel wrapper feature selection algorithm based on Iterated Greedy (IG) metaheuristic for sentiment classification. We also develop a selection procedure that is based on pre-calculated filter scores for the greedy construction part of the IG algorithm. A comprehensive experimental study is conducted on commonly-used sentiment analysis datasets to assess the performance of the proposed method. The computational results show that the proposed algorithm achieves 96.45% and 90.74% accuracy rates on average by using Multinomial Naïve Bayes classifier for 9 public sentiment and 4 Amazon product reviews datasets, respectively. The results also reveal that our algorithm outperforms state-of-the-art results for the 9 public sentiment datasets. Moreover, the proposed algorithm produces highly competitive results with state-of-the-art feature selection algorithms for 4 Amazon datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的松鼠应助朱光辉采纳,获得10
刚刚
朴素的松鼠应助朱光辉采纳,获得10
刚刚
1秒前
yzm发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
回忆都是负荷完成签到,获得积分10
7秒前
诚心太君发布了新的文献求助10
8秒前
邱型程发布了新的文献求助10
9秒前
大个应助海藻采纳,获得10
9秒前
木展子完成签到,获得积分20
9秒前
10秒前
10秒前
小蘑菇应助Firmino采纳,获得30
10秒前
所所应助落后的怀梦采纳,获得10
10秒前
12秒前
充电宝应助诚心太君采纳,获得10
12秒前
13秒前
14秒前
y111发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
sunnie发布了新的文献求助10
14秒前
16秒前
17秒前
LLLi发布了新的文献求助10
18秒前
Luo发布了新的文献求助10
19秒前
开心牛油果完成签到,获得积分10
20秒前
21秒前
打打应助活力小蘑菇采纳,获得10
22秒前
诚心太君完成签到,获得积分10
22秒前
庾稀发布了新的文献求助10
23秒前
暴躁的黎云完成签到,获得积分10
25秒前
25秒前
风趣的胜应助啦啦小王~采纳,获得10
25秒前
25秒前
26秒前
27秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976