Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up

胡须 材料科学 络腮胡子 透射电子显微镜 枝晶(数学) 过电位 阳极 压力(语言学) 锂(药物) 显微镜 纳米技术 复合材料 化学 光学 电极 电化学 物理 哲学 物理化学 内分泌学 医学 语言学 数学 几何学
作者
Liqiang Zhang,Tingting Yang,Congcong Du,Qiunan Liu,Yushu Tang,Jun Zhao,Baolin Wang,Tianwu Chen,Yong Sun,Peng Jia,Hui Li,Lin Geng,Jingzhao Chen,Hongjun Ye,Zaifa Wang,Yanshuai Li,Haiming Sun,Xiaomei Li,Qiushi Dai,Yongfu Tang,Qiuming Peng,Tongde Shen,Sulin Zhang,Ting Zhu,Jianyu Huang
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:15 (2): 94-98 被引量:282
标识
DOI:10.1038/s41565-019-0604-x
摘要

Lithium metal is considered the ultimate anode material for future rechargeable batteries1,2, but the development of Li metal-based rechargeable batteries has achieved only limited success due to uncontrollable Li dendrite growth3–7. In a broad class of all-solid-state Li batteries, one approach to suppress Li dendrite growth has been the use of mechanically stiff solid electrolytes8,9. However, Li dendrites still grow through them10,11. Resolving this issue requires a fundamental understanding of the growth and associated electro-chemo-mechanical behaviour of Li dendrites. Here, we report in situ growth observation and stress measurement of individual Li whiskers, the primary Li dendrite morphologies12. We combine an atomic force microscope with an environmental transmission electron microscope in a novel experimental set-up. At room temperature, a submicrometre whisker grows under an applied voltage (overpotential) against the atomic force microscope tip, generating a growth stress up to 130 MPa; this value is substantially higher than the stresses previously reported for bulk13 and micrometre-sized Li14. The measured yield strength of Li whiskers under pure mechanical loading reaches as high as 244 MPa. Our results provide quantitative benchmarks for the design of Li dendrite growth suppression strategies in all-solid-state batteries. Lithium whisker growth and mechanical properties can be studied in situ using a combination of two microscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
XShu发布了新的文献求助10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得30
刚刚
传奇3应助科研通管家采纳,获得30
刚刚
Owen应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
文艺明杰发布了新的文献求助100
2秒前
所所应助嘟嘟采纳,获得10
2秒前
4秒前
HMZ完成签到,获得积分10
4秒前
研友_LkYKJZ完成签到,获得积分10
4秒前
田様应助Khr1stINK采纳,获得10
4秒前
4秒前
风趣夜云完成签到,获得积分10
5秒前
5秒前
真实的一鸣完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助50
6秒前
7秒前
yKkkkkk发布了新的文献求助10
7秒前
怎么可能会凉完成签到 ,获得积分10
8秒前
10秒前
10秒前
大大完成签到,获得积分10
11秒前
11秒前
11秒前
Xiaoxiao应助greenPASS666采纳,获得10
11秒前
现代的秋白完成签到,获得积分10
11秒前
从容的盼晴完成签到,获得积分10
11秒前
scvrl完成签到,获得积分10
12秒前
12秒前
楼寒天发布了新的文献求助10
12秒前
请叫我风吹麦浪应助C2采纳,获得10
14秒前
xlj发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808