Improving Brain E-Health Services via High-Performance EEG Classification With Grouping Bayesian Optimization

超参数 计算机科学 脑电图 卷积神经网络 人工智能 深度学习 人工神经网络 机器学习 模式识别(心理学) 医学 精神科
作者
Hengjin Ke,Dan Chen,Benyun Shi,Jindong Zhang,Xianzeng Liu,Xinhua Zhang,Xiaoli Li
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 696-708 被引量:51
标识
DOI:10.1109/tsc.2019.2962673
摘要

Online electroencephalograph (EEG) classification is a core service of recently booming brain e-health, but its performance often becomes unstable because (1) conventional end-to-end models (e.g., deep neural network, DNN) largely remain static, while brain states of diseases are highly dynamic and exhibits significant individuality; and (2) EEG analytics are too complicated and have to be sustained by advanced computing services. This study adopts an automatic machine learning method to construct a dual-CNN (convolutional neural network) of high performance in terms of both accuracy and efficiency. The model can optimize its hyperparameters continuously on its own initiative. Experimental results in the evaluation of depression using real EEG datasets indicate that (1) the proposed method executes 3.5 times faster compared with a conventional counterpart; (2) the dual-CNN gains a significant performance improvement (versus CapsuleNet and Resnet-16) in identifying Major Depression Disorder (MDD) with accuracy, sensitivity, and specificity up to 98.81, 98.36, and 99.31 percent respectively; and those for treatment outcome are 99.52, 99.63, and 99.37 percent respectively, and (3) classification can be completed several hundred times faster than EEG being collected upon a COTS computer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
倾听阳光完成签到 ,获得积分10
刚刚
笨笨青筠完成签到 ,获得积分10
刚刚
怡然的复天完成签到,获得积分10
1秒前
GingerF应助昏睡的蟠桃采纳,获得200
3秒前
科研通AI6应助阿辉采纳,获得10
4秒前
10秒前
Brenda完成签到,获得积分10
14秒前
酸酸完成签到 ,获得积分10
15秒前
Tom完成签到,获得积分10
17秒前
Hello应助Siliang采纳,获得10
19秒前
酸酸关注了科研通微信公众号
20秒前
keyanlv完成签到,获得积分10
25秒前
子苓完成签到 ,获得积分10
25秒前
bing完成签到,获得积分10
26秒前
zxj完成签到,获得积分10
27秒前
hwl26完成签到,获得积分10
28秒前
SARON完成签到 ,获得积分10
31秒前
锥子完成签到,获得积分10
33秒前
路路完成签到 ,获得积分10
35秒前
陶军辉完成签到 ,获得积分10
36秒前
感动清炎完成签到,获得积分10
38秒前
38秒前
wanci应助科研通管家采纳,获得10
38秒前
pluto应助科研通管家采纳,获得10
38秒前
chrisio应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
852应助科研通管家采纳,获得10
38秒前
Clara应助科研通管家采纳,获得10
38秒前
子车茗应助科研通管家采纳,获得10
38秒前
pluto应助科研通管家采纳,获得10
39秒前
Tao应助科研通管家采纳,获得10
39秒前
BareBear应助科研通管家采纳,获得10
39秒前
pluto应助科研通管家采纳,获得10
39秒前
ludong_0应助科研通管家采纳,获得10
39秒前
无极微光应助科研通管家采纳,获得20
39秒前
BareBear应助科研通管家采纳,获得10
39秒前
pluto应助科研通管家采纳,获得10
39秒前
子车茗应助科研通管家采纳,获得10
39秒前
BareBear应助科研通管家采纳,获得10
39秒前
BareBear应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581