Reinforcement Learning based Recommender Systems: A Survey

强化学习 推荐系统 计算机科学 马尔可夫决策过程 RSS 人工智能 可扩展性 协同过滤 领域(数学) 机器学习 马尔可夫过程 万维网 数据库 数学 统计 纯数学
作者
M. Mehdi Afsar,Trafford Crump,Behrouz H. Far
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (7): 1-38 被引量:254
标识
DOI:10.1145/3543846
摘要

Recommender systems (RSs) have become an inseparable part of our everyday lives. They help us find our favorite items to purchase, our friends on social networks, and our favorite movies to watch. Traditionally, the recommendation problem was considered to be a classification or prediction problem, but it is now widely agreed that formulating it as a sequential decision problem can better reflect the user-system interaction. Therefore, it can be formulated as a Markov decision process (MDP) and be solved by reinforcement learning (RL) algorithms. Unlike traditional recommendation methods, including collaborative filtering and content-based filtering, RL is able to handle the sequential, dynamic user-system interaction and to take into account the long-term user engagement. Although the idea of using RL for recommendation is not new and has been around for about two decades, it was not very practical, mainly because of scalability problems of traditional RL algorithms. However, a new trend has emerged in the field since the introduction of deep reinforcement learning (DRL) , which made it possible to apply RL to the recommendation problem with large state and action spaces. In this paper, a survey on reinforcement learning based recommender systems (RLRSs) is presented. Our aim is to present an outlook on the field and to provide the reader with a fairly complete knowledge of key concepts of the field. We first recognize and illustrate that RLRSs can be generally classified into RL- and DRL-based methods. Then, we propose an RLRS framework with four components, i.e., state representation, policy optimization, reward formulation, and environment building, and survey RLRS algorithms accordingly. We highlight emerging topics and depict important trends using various graphs and tables. Finally, we discuss important aspects and challenges that can be addressed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy发布了新的文献求助10
2秒前
3秒前
烟花应助huajinoob采纳,获得30
3秒前
韩星发布了新的文献求助10
4秒前
FashionBoy应助xun采纳,获得10
4秒前
何何完成签到 ,获得积分10
7秒前
可爱的函函应助吃饭饭采纳,获得10
8秒前
刮风这天完成签到,获得积分10
9秒前
10秒前
12秒前
川川发布了新的文献求助10
13秒前
14秒前
陈腿毛发布了新的文献求助10
16秒前
Eton驳回了Billy应助
16秒前
17秒前
共享精神应助黙宇循光采纳,获得10
18秒前
19秒前
JHS完成签到,获得积分10
19秒前
19秒前
20秒前
NexusExplorer应助123采纳,获得10
20秒前
Plemon完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI2S应助沉默的婴采纳,获得10
22秒前
顾矜应助55555采纳,获得10
22秒前
22秒前
烟花应助川川采纳,获得10
24秒前
YD完成签到,获得积分10
25秒前
陈腿毛完成签到,获得积分10
25秒前
25秒前
25秒前
乐山乐水发布了新的文献求助10
25秒前
吃饭饭发布了新的文献求助10
26秒前
请叫我湿人人完成签到,获得积分10
26秒前
26秒前
隐形曼青应助sunshine采纳,获得10
26秒前
26秒前
zwg完成签到,获得积分10
27秒前
小栗发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529341
捐赠科研通 2621879
什么是DOI,文献DOI怎么找? 1434209
科研通“疑难数据库(出版商)”最低求助积分说明 665170
邀请新用户注册赠送积分活动 650738