Reinforcement Learning based Recommender Systems: A Survey

强化学习 推荐系统 计算机科学 马尔可夫决策过程 RSS 人工智能 可扩展性 协同过滤 领域(数学) 机器学习 马尔可夫过程 万维网 数据库 数学 统计 纯数学
作者
M. Mehdi Afsar,Trafford Crump,Behrouz H. Far
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (7): 1-38 被引量:299
标识
DOI:10.1145/3543846
摘要

Recommender systems (RSs) have become an inseparable part of our everyday lives. They help us find our favorite items to purchase, our friends on social networks, and our favorite movies to watch. Traditionally, the recommendation problem was considered to be a classification or prediction problem, but it is now widely agreed that formulating it as a sequential decision problem can better reflect the user-system interaction. Therefore, it can be formulated as a Markov decision process (MDP) and be solved by reinforcement learning (RL) algorithms. Unlike traditional recommendation methods, including collaborative filtering and content-based filtering, RL is able to handle the sequential, dynamic user-system interaction and to take into account the long-term user engagement. Although the idea of using RL for recommendation is not new and has been around for about two decades, it was not very practical, mainly because of scalability problems of traditional RL algorithms. However, a new trend has emerged in the field since the introduction of deep reinforcement learning (DRL) , which made it possible to apply RL to the recommendation problem with large state and action spaces. In this paper, a survey on reinforcement learning based recommender systems (RLRSs) is presented. Our aim is to present an outlook on the field and to provide the reader with a fairly complete knowledge of key concepts of the field. We first recognize and illustrate that RLRSs can be generally classified into RL- and DRL-based methods. Then, we propose an RLRS framework with four components, i.e., state representation, policy optimization, reward formulation, and environment building, and survey RLRS algorithms accordingly. We highlight emerging topics and depict important trends using various graphs and tables. Finally, we discuss important aspects and challenges that can be addressed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鉴湖完成签到,获得积分10
刚刚
香菇蛋完成签到,获得积分10
1秒前
LZH完成签到,获得积分10
2秒前
3秒前
开放友灵完成签到,获得积分10
3秒前
3秒前
4秒前
脆香可丽饼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
充电宝应助hhh采纳,获得10
5秒前
Yukaze发布了新的文献求助10
6秒前
shutong发布了新的文献求助30
6秒前
JamesPei应助羊羊羊采纳,获得10
7秒前
7秒前
9秒前
9秒前
www发布了新的文献求助10
9秒前
10秒前
王羲之发布了新的文献求助10
10秒前
牛牛眉目发布了新的文献求助10
10秒前
10秒前
Hello应助十一采纳,获得10
11秒前
11秒前
我是老大应助小树采纳,获得10
11秒前
11秒前
12秒前
XCHI发布了新的文献求助10
13秒前
汉堡包应助半柚采纳,获得10
16秒前
10发布了新的文献求助10
16秒前
牛奶牛奶发布了新的文献求助10
16秒前
俗签发布了新的文献求助10
16秒前
上官若男应助Yukaze采纳,获得10
17秒前
完美世界应助2021采纳,获得10
17秒前
minrui发布了新的文献求助20
17秒前
18秒前
直率芸遥发布了新的文献求助10
20秒前
可爱的函函应助NMZN采纳,获得10
20秒前
王羲之完成签到,获得积分0
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093