亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential vessel segmentation via deep channel attention network

计算机科学 人工智能 分割 编码器 特征(语言学) 频道(广播) 模式识别(心理学) 解码方法 卷积神经网络 帧(网络) 计算机视觉 深度学习 特征提取 算法 电信 语言学 操作系统 哲学 计算机网络
作者
Dongdong Hao,Song Ding,Linwei Qiu,Yisong Lv,Baowei Fei,Yueqi Zhu,Binjie Qin
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 172-187 被引量:65
标识
DOI:10.1016/j.neunet.2020.05.005
摘要

Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, developing automatic vessel segmentation is particularly challenging due to the overlapping structures, low contrast and the presence of complex and dynamic background artifacts in XCA images. This paper develops a novel encoder-decoder deep network architecture which exploits the several contextual frames of 2D+t sequential images in a sliding window centered at current frame to segment 2D vessel masks from the current frame. The architecture is equipped with temporal-spatial feature extraction in encoder stage, feature fusion in skip connection layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 3D convolutional layers are employed to hierarchically extract temporal-spatial features. Skip connection layers subsequently fuse the temporal-spatial feature maps and deliver them to the corresponding decoder stages. To efficiently discriminate vessel features from the complex and noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention blocks to refine the intermediate feature maps from skip connection layers for subsequently decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, Dice loss function is implemented to train the proposed deep network in order to tackle the class imbalance problem in the XCA data due to the wide distribution of complex background artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms demonstrate the proposed method's superior performance over other methods in terms of the quantitative metrics and visual validation. To facilitate the reproductive research in XCA community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/SVS-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Colo发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
丽优发布了新的文献求助10
12秒前
丽优发布了新的文献求助10
12秒前
丽优发布了新的文献求助10
13秒前
丽优发布了新的文献求助10
14秒前
丽优发布了新的文献求助10
14秒前
丽优发布了新的文献求助10
14秒前
丽优发布了新的文献求助10
15秒前
丽优发布了新的文献求助10
15秒前
丽优发布了新的文献求助10
15秒前
丽优发布了新的文献求助10
15秒前
黑摄会阿Fay完成签到,获得积分10
31秒前
ajing完成签到,获得积分10
33秒前
39秒前
罗莹洁发布了新的文献求助10
45秒前
51秒前
57秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
zgjc发布了新的文献求助10
1分钟前
Orange应助冯宇采纳,获得10
1分钟前
1分钟前
冯宇发布了新的文献求助10
1分钟前
希望天下0贩的0应助丽优采纳,获得10
1分钟前
李健应助丽优采纳,获得10
1分钟前
乐乐应助丽优采纳,获得10
1分钟前
bkagyin应助丽优采纳,获得10
1分钟前
FashionBoy应助丽优采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426457
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171843
捐赠科研通 4457956
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435785
关于科研通互助平台的介绍 1413229