Sequential vessel segmentation via deep channel attention network

计算机科学 人工智能 分割 编码器 特征(语言学) 频道(广播) 模式识别(心理学) 解码方法 卷积神经网络 帧(网络) 计算机视觉 深度学习 特征提取 算法 电信 语言学 操作系统 哲学 计算机网络
作者
Dongdong Hao,Song Ding,Linwei Qiu,Yisong Lv,Baowei Fei,Yueqi Zhu,Binjie Qin
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 172-187 被引量:65
标识
DOI:10.1016/j.neunet.2020.05.005
摘要

Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, developing automatic vessel segmentation is particularly challenging due to the overlapping structures, low contrast and the presence of complex and dynamic background artifacts in XCA images. This paper develops a novel encoder-decoder deep network architecture which exploits the several contextual frames of 2D+t sequential images in a sliding window centered at current frame to segment 2D vessel masks from the current frame. The architecture is equipped with temporal-spatial feature extraction in encoder stage, feature fusion in skip connection layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 3D convolutional layers are employed to hierarchically extract temporal-spatial features. Skip connection layers subsequently fuse the temporal-spatial feature maps and deliver them to the corresponding decoder stages. To efficiently discriminate vessel features from the complex and noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention blocks to refine the intermediate feature maps from skip connection layers for subsequently decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, Dice loss function is implemented to train the proposed deep network in order to tackle the class imbalance problem in the XCA data due to the wide distribution of complex background artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms demonstrate the proposed method's superior performance over other methods in terms of the quantitative metrics and visual validation. To facilitate the reproductive research in XCA community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/SVS-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Aping采纳,获得10
刚刚
忧虑的香岚完成签到 ,获得积分10
刚刚
刚刚
1秒前
ran完成签到,获得积分10
1秒前
kai完成签到,获得积分10
3秒前
风轻轻完成签到 ,获得积分10
4秒前
朴素板栗发布了新的文献求助10
4秒前
小汤圆发布了新的文献求助10
4秒前
在水一方应助胖川采纳,获得10
4秒前
小何发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
科目三应助juphen2采纳,获得10
8秒前
9秒前
9秒前
万能图书馆应助勤奋千风采纳,获得10
11秒前
11秒前
asa发布了新的文献求助10
12秒前
12秒前
火星上的柚子关注了科研通微信公众号
12秒前
完美世界应助ngg采纳,获得10
12秒前
伞镜完成签到 ,获得积分10
12秒前
13秒前
shjyang完成签到,获得积分0
14秒前
小汤圆完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
麦麦完成签到,获得积分10
15秒前
诸葛朝雪完成签到,获得积分10
15秒前
15秒前
lilili完成签到,获得积分10
15秒前
jovrtic发布了新的文献求助10
17秒前
汉堡包应助asa采纳,获得10
17秒前
17秒前
17秒前
17秒前
科研通AI6.1应助明明就采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771434
求助须知:如何正确求助?哪些是违规求助? 5591374
关于积分的说明 15427373
捐赠科研通 4904743
什么是DOI,文献DOI怎么找? 2638944
邀请新用户注册赠送积分活动 1586771
关于科研通互助平台的介绍 1541784