亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential vessel segmentation via deep channel attention network

计算机科学 人工智能 分割 编码器 特征(语言学) 频道(广播) 模式识别(心理学) 解码方法 卷积神经网络 帧(网络) 计算机视觉 深度学习 特征提取 算法 电信 语言学 操作系统 哲学 计算机网络
作者
Dongdong Hao,Song Ding,Linwei Qiu,Yisong Lv,Baowei Fei,Donghui Zhang,Binjie Qin
出处
期刊:Neural Networks [Elsevier BV]
卷期号:128: 172-187 被引量:27
标识
DOI:10.1016/j.neunet.2020.05.005
摘要

Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, developing automatic vessel segmentation is particularly challenging due to the overlapping structures, low contrast and the presence of complex and dynamic background artifacts in XCA images. This paper develops a novel encoder-decoder deep network architecture which exploits the several contextual frames of 2D+t sequential images in a sliding window centered at current frame to segment 2D vessel masks from the current frame. The architecture is equipped with temporal-spatial feature extraction in encoder stage, feature fusion in skip connection layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 3D convolutional layers are employed to hierarchically extract temporal-spatial features. Skip connection layers subsequently fuse the temporal-spatial feature maps and deliver them to the corresponding decoder stages. To efficiently discriminate vessel features from the complex and noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention blocks to refine the intermediate feature maps from skip connection layers for subsequently decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, Dice loss function is implemented to train the proposed deep network in order to tackle the class imbalance problem in the XCA data due to the wide distribution of complex background artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms demonstrate the proposed method's superior performance over other methods in terms of the quantitative metrics and visual validation. To facilitate the reproductive research in XCA community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/SVS-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
16秒前
谷千千发布了新的文献求助10
20秒前
谷千千完成签到,获得积分10
36秒前
56秒前
jyy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Shuo应助科研通管家采纳,获得20
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
文艺易蓉发布了新的文献求助10
1分钟前
小蘑菇应助文艺易蓉采纳,获得10
1分钟前
调皮醉波完成签到 ,获得积分10
1分钟前
2分钟前
XiaoLiu完成签到,获得积分10
2分钟前
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
充电宝应助Xinying采纳,获得10
2分钟前
2分钟前
Hvginn完成签到,获得积分10
3分钟前
3分钟前
sc发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
zwang688完成签到,获得积分10
3分钟前
负责的书兰完成签到 ,获得积分20
3分钟前
Ava应助jyy采纳,获得10
3分钟前
3分钟前
3分钟前
ygl0217发布了新的文献求助10
3分钟前
3分钟前
ygl0217完成签到,获得积分10
4分钟前
null应助星沐易采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
jyy发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695