Sequential vessel segmentation via deep channel attention network

计算机科学 人工智能 分割 编码器 特征(语言学) 频道(广播) 模式识别(心理学) 解码方法 卷积神经网络 帧(网络) 计算机视觉 深度学习 特征提取 算法 电信 语言学 操作系统 哲学 计算机网络
作者
Dongdong Hao,Song Ding,Linwei Qiu,Yisong Lv,Baowei Fei,Yueqi Zhu,Binjie Qin
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 172-187 被引量:65
标识
DOI:10.1016/j.neunet.2020.05.005
摘要

Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, developing automatic vessel segmentation is particularly challenging due to the overlapping structures, low contrast and the presence of complex and dynamic background artifacts in XCA images. This paper develops a novel encoder-decoder deep network architecture which exploits the several contextual frames of 2D+t sequential images in a sliding window centered at current frame to segment 2D vessel masks from the current frame. The architecture is equipped with temporal-spatial feature extraction in encoder stage, feature fusion in skip connection layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 3D convolutional layers are employed to hierarchically extract temporal-spatial features. Skip connection layers subsequently fuse the temporal-spatial feature maps and deliver them to the corresponding decoder stages. To efficiently discriminate vessel features from the complex and noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention blocks to refine the intermediate feature maps from skip connection layers for subsequently decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, Dice loss function is implemented to train the proposed deep network in order to tackle the class imbalance problem in the XCA data due to the wide distribution of complex background artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms demonstrate the proposed method's superior performance over other methods in terms of the quantitative metrics and visual validation. To facilitate the reproductive research in XCA community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/SVS-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的曲奇完成签到 ,获得积分10
刚刚
魔幻的摩托完成签到 ,获得积分10
刚刚
仁爱小凝完成签到,获得积分20
刚刚
帅b完成签到,获得积分10
1秒前
王杰发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
4秒前
中和皇极应助仁爱小凝采纳,获得10
4秒前
圆圆发布了新的文献求助10
5秒前
情怀应助123lx采纳,获得10
5秒前
顾矜应助惜灵采纳,获得10
5秒前
和谐雪曼发布了新的文献求助10
6秒前
CiCi完成签到 ,获得积分10
7秒前
帅b发布了新的文献求助10
7秒前
Gcy丶发布了新的文献求助10
8秒前
Hello应助西海岸的风采纳,获得10
8秒前
王1完成签到,获得积分20
9秒前
Lkq发布了新的文献求助10
9秒前
10秒前
李爱国应助ck采纳,获得10
10秒前
爱听歌的人达完成签到,获得积分10
12秒前
12秒前
spc68应助晚意采纳,获得10
13秒前
14秒前
闪闪涫应助帅b采纳,获得10
15秒前
王1发布了新的文献求助10
15秒前
zzzzzzzz周发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
万能图书馆应助圆圆采纳,获得10
17秒前
研友_VZG7GZ应助天苍野茫采纳,获得10
17秒前
18秒前
20秒前
善学以致用应助Aliya采纳,获得10
21秒前
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672