已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy

医学 核医学 四分位数 数学 人工神经网络 放射治疗计划 统计 放射治疗 计算机科学 人工智能 置信区间 外科
作者
Ying Song,Junjie Hu,Yang Liu,Haiyun Hu,Yang Huang,Sen Bai,Yi Zhang
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:149: 111-116 被引量:63
标识
DOI:10.1016/j.radonc.2020.05.005
摘要

Purpose To apply a deep neural network to predict dose distributions of rectal cancer patients for accelerated volume modulated arc technique (VMAT) planning. Materials and methods Computed tomography scans and approved VMAT plans together with Doseapproved of 187 patients treated from February 2018 to April 2019 were randomly selected for this retrospective study. The deep neural network DeepLabv3+ was applied for dose distribution prediction. A prior dose information-aided planning scheme was introduced. Prediction precision was evaluated by mean square error (MSE), normalized dose difference (δD), and dose–volume histogram (DVH) indices using a paired t test. Information-aided and experienced replanning were performed by 1-year and 6-year experienced dosimetrists, respectively. Replanning time and DVH indices were evaluated by two-way variance analysis. Results The DeepLabv3+ prediction results (DoseDeepLabv3+) were all clinically acceptable. Taking Doseapproved as the baseline, the MSE was 0.001 and mean δD was 0.40% with an inter-quartile range of 0.079%–0.30% for DoseDeepLabv3+. No significant differences were found for the planning target volume quantitative parameters between Doseapproved and DoseDeepLabv3+, except for the conformality index. For the two-way variance analysis, a significantly different replanning time was found between the information-aided and experienced replanning with maximum time-saving of 15.76 min. Information-aided replans had the advantage of lower maximum dose, higher minimum dose, and lower homogeneity index, and the disadvantage of lower conformality index and higher machine unites with significant differences. Conclusion DeepLabv3+ successfully predicted rectal cancer dose distribution, and the predicted prior information helped save planning times for multi-level experienced dosimetrists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助MisterChou采纳,获得10
刚刚
2秒前
JamesPei应助深情书芹采纳,获得10
7秒前
9秒前
小二郎应助夏冰雹采纳,获得10
10秒前
10秒前
ZQQ完成签到 ,获得积分10
10秒前
12秒前
12秒前
澄子完成签到 ,获得积分10
13秒前
cacaldon发布了新的文献求助20
13秒前
安东晨晨完成签到,获得积分10
13秒前
华仔应助科研通管家采纳,获得10
14秒前
nenoaowu应助科研通管家采纳,获得30
14秒前
所所应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
iNk应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得30
14秒前
nenoaowu应助科研通管家采纳,获得30
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
16秒前
17秒前
mnaq发布了新的文献求助20
17秒前
请叫我风吹麦浪应助yu采纳,获得10
19秒前
火星上惜天完成签到 ,获得积分10
19秒前
20秒前
李春霞发布了新的文献求助10
22秒前
伊萨卡完成签到 ,获得积分10
23秒前
曾经二娘发布了新的文献求助10
24秒前
MisterChou完成签到,获得积分20
24秒前
羊羊爱吃羊羊完成签到 ,获得积分10
24秒前
gkhsdvkb完成签到 ,获得积分10
25秒前
斯文败类应助永和采纳,获得10
26秒前
28秒前
微醺钓青鱼完成签到 ,获得积分10
28秒前
真6完成签到 ,获得积分10
28秒前
晨曦完成签到 ,获得积分10
29秒前
tufei完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786329
捐赠科研通 2940104
什么是DOI,文献DOI怎么找? 1611664
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352