Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 哲学 法学 操作系统 语言学
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助123456采纳,获得10
2秒前
daicy发布了新的文献求助10
5秒前
呼初南完成签到 ,获得积分20
5秒前
6秒前
7秒前
7秒前
8秒前
丁鹏笑完成签到 ,获得积分0
8秒前
量子星尘发布了新的文献求助10
8秒前
热心采白完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
刘丰铭发布了新的文献求助10
11秒前
韩笑发布了新的文献求助10
12秒前
123456发布了新的文献求助10
13秒前
Seek发布了新的文献求助50
14秒前
Liurthis关注了科研通微信公众号
14秒前
热心采白关注了科研通微信公众号
14秒前
Log发布了新的文献求助10
14秒前
luis应助科研通管家采纳,获得10
15秒前
wy.he应助科研通管家采纳,获得10
15秒前
一一应助科研通管家采纳,获得20
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
tuanheqi应助科研通管家采纳,获得150
15秒前
15秒前
15秒前
wanci应助科研通管家采纳,获得10
15秒前
老福贵儿应助科研通管家采纳,获得10
15秒前
buno应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
wy.he应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
buno应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
一一应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039