Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 哲学 法学 操作系统 语言学
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DrSong发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
奕_yinb完成签到 ,获得积分10
3秒前
星辰大海应助白开水采纳,获得10
3秒前
3秒前
麦麦完成签到,获得积分20
3秒前
123456qi发布了新的文献求助10
3秒前
4秒前
4秒前
小新应助烟波钓徒采纳,获得10
4秒前
4秒前
负责吃饭完成签到,获得积分10
4秒前
微渺完成签到,获得积分10
4秒前
睿力完成签到,获得积分10
4秒前
妮妮完成签到,获得积分10
5秒前
2224536完成签到,获得积分10
5秒前
天天快乐应助vivre223采纳,获得10
5秒前
shuiha发布了新的文献求助10
5秒前
5秒前
一一应助零度冰采纳,获得10
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
6秒前
6秒前
梅竹发布了新的文献求助10
7秒前
万能图书馆应助yiyi采纳,获得10
7秒前
lili完成签到,获得积分10
7秒前
8秒前
侏罗纪世界完成签到,获得积分10
8秒前
infe发布了新的文献求助10
8秒前
奕_yinb关注了科研通微信公众号
9秒前
LGS发布了新的文献求助10
9秒前
rrrrrrrrrrrrrrr完成签到,获得积分20
10秒前
smin发布了新的文献求助10
10秒前
10秒前
无花果应助往不随采纳,获得10
10秒前
11秒前
优雅含灵发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853