Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 语言学 哲学 法学 操作系统
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级真完成签到,获得积分10
1秒前
Owen应助AAA爱老虎油采纳,获得10
3秒前
3秒前
7秒前
yannick发布了新的文献求助10
7秒前
浮游应助hjhj采纳,获得10
8秒前
Mrmiss666发布了新的文献求助20
8秒前
一个one子完成签到 ,获得积分10
8秒前
9秒前
科研通AI6应助手拿大炮采纳,获得10
10秒前
11秒前
CJ完成签到,获得积分10
11秒前
12秒前
13秒前
ne完成签到 ,获得积分10
15秒前
工位瘤子发布了新的文献求助30
15秒前
干净的人生完成签到,获得积分20
16秒前
SciGPT应助Wednesday Chong采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
HHYYAA发布了新的文献求助10
18秒前
18秒前
脑洞疼应助lza采纳,获得10
21秒前
无花果应助我就是KKKK采纳,获得10
21秒前
22秒前
HHYYAA完成签到,获得积分10
23秒前
zzzzz发布了新的文献求助10
23秒前
yin完成签到,获得积分10
24秒前
JamesPei应助年轻如凡采纳,获得10
25秒前
25秒前
26秒前
小蘑菇应助工位瘤子采纳,获得10
26秒前
May发布了新的文献求助30
27秒前
苹果不弱完成签到,获得积分10
27秒前
科研通AI2S应助sdkabdrxt采纳,获得10
27秒前
28秒前
温柔的沉鱼完成签到,获得积分10
28秒前
28秒前
28秒前
浮游应助sdkabdrxt采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420890
求助须知:如何正确求助?哪些是违规求助? 4535903
关于积分的说明 14151854
捐赠科研通 4452682
什么是DOI,文献DOI怎么找? 2442484
邀请新用户注册赠送积分活动 1433930
关于科研通互助平台的介绍 1411021