Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 语言学 哲学 法学 操作系统
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier BV]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小沐完成签到,获得积分10
刚刚
nana完成签到,获得积分10
2秒前
激动的八宝粥完成签到 ,获得积分10
3秒前
3秒前
科研通AI6应助落寞的易绿采纳,获得10
4秒前
善学以致用应助jerry采纳,获得10
5秒前
CHENXIN532完成签到,获得积分10
5秒前
爱笑小笼包完成签到,获得积分10
6秒前
修仙中应助行毅文采纳,获得10
8秒前
9秒前
9秒前
Optimistic发布了新的文献求助10
11秒前
烟花应助等待的谷波采纳,获得10
11秒前
11秒前
13秒前
Leon Lai发布了新的文献求助10
14秒前
15秒前
张梦宇发布了新的文献求助10
16秒前
17秒前
17秒前
Akim应助Fan采纳,获得10
18秒前
19秒前
20秒前
俊逸香岚完成签到,获得积分10
20秒前
良陈美景奈何天完成签到 ,获得积分10
21秒前
HughWang发布了新的文献求助10
22秒前
李爱国应助尊敬的雪珍采纳,获得10
22秒前
英吉利25发布了新的文献求助10
23秒前
jerry发布了新的文献求助10
23秒前
23秒前
邱小七发布了新的文献求助10
24秒前
24秒前
25秒前
tata0215完成签到 ,获得积分10
26秒前
laxy发布了新的文献求助20
26秒前
28秒前
TIPHA发布了新的文献求助10
29秒前
30秒前
bengbeng发布了新的文献求助10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133536
求助须知:如何正确求助?哪些是违规求助? 4334655
关于积分的说明 13504255
捐赠科研通 4171630
什么是DOI,文献DOI怎么找? 2287267
邀请新用户注册赠送积分活动 1288167
关于科研通互助平台的介绍 1229009