清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 哲学 法学 操作系统 语言学
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
占若完成签到,获得积分20
16秒前
17秒前
冰凌心恋完成签到,获得积分10
21秒前
披着羊皮的狼完成签到 ,获得积分10
23秒前
占若发布了新的文献求助10
23秒前
LINDENG2004完成签到 ,获得积分10
24秒前
24秒前
RC发布了新的文献求助10
29秒前
英姑应助RC采纳,获得10
35秒前
徐团伟完成签到 ,获得积分10
46秒前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
紫熊完成签到,获得积分10
1分钟前
BowieHuang应助优秀的珊珊采纳,获得10
1分钟前
1分钟前
孺子牛完成签到,获得积分10
1分钟前
乔杰完成签到 ,获得积分10
1分钟前
孺子牛发布了新的文献求助10
1分钟前
领导范儿应助孺子牛采纳,获得10
2分钟前
FIN发布了新的文献求助50
2分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
Jj7完成签到,获得积分0
2分钟前
S1mple发布了新的文献求助10
2分钟前
muriel完成签到,获得积分0
3分钟前
如歌完成签到,获得积分10
3分钟前
FIN发布了新的文献求助400
3分钟前
S1mple完成签到,获得积分10
3分钟前
j7完成签到 ,获得积分10
4分钟前
4分钟前
闲人颦儿完成签到,获得积分0
4分钟前
5分钟前
赵英哲发布了新的文献求助10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
赵英哲完成签到,获得积分10
5分钟前
姚老表完成签到,获得积分10
5分钟前
阿绫完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590587
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633763
什么是DOI,文献DOI怎么找? 2532855
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733