Evolutionary game theory analysis for understanding the decision-making mechanisms of governments and developers on green building incentives

激励 政府(语言学) 公共经济学 相互依存 有限理性 过程(计算) 情感(语言学) 跨国公司 微观经济学 业务 博弈论 产业组织 经济 营销 计算机科学 政治学 财务 哲学 法学 操作系统 语言学
作者
Ke Fan,Eddie C.M. Hui
出处
期刊:Building and Environment [Elsevier]
卷期号:179: 106972-106972 被引量:109
标识
DOI:10.1016/j.buildenv.2020.106972
摘要

Green building incentives are widely implemented. Under each incentive, governments and developers have different payoffs and dominant strategies that affect incentive effectiveness. Existing studies have examined incentive effectiveness through different methods but have failed to reveal the decision-making mechanisms of governments and developers in a dynamic process of a game. As governments and developers have bounded rationality, and their strategies may change from time to time, this study employed evolutionary game theory to model the evolutionary behaviours of two players, thus providing a quantitative method to illustrate the effectiveness of incentives and the strategy changes of the players. This study concluded that four types of interactions between governments and developers affect incentive effectiveness, namely, 1) governments' dominant strategies depend on developers' choices; 2) developers' dominant strategies rely on governments' choices; 3) two parties' dominant strategies are independent; 4) their dominant strategies are interdependent. Under these interactions, the price premium of green building and the level and affordability of incentives were found to be the critical factors for the decision makings of the leading players. Policy recommendations were proposed accordingly. This study adopted a mathematical approach to investigate the conflicts of interests between governments and developers. It also provided a general model which can fit various contexts. In addition, the research introduced a valuable angle of government payoffs. Results can advance policymakers' understanding of green building incentives, help policymakers predict developers' behaviours and the incentive effectiveness in the long run and justify the design or improvement of multinational incentives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyw完成签到,获得积分10
4秒前
cqcqcq完成签到 ,获得积分10
5秒前
7秒前
罗氏集团完成签到,获得积分10
7秒前
dlut0407完成签到,获得积分10
7秒前
young完成签到 ,获得积分10
8秒前
nkmenghan完成签到,获得积分10
8秒前
lezard完成签到,获得积分10
8秒前
msd2phd完成签到,获得积分10
8秒前
了凡完成签到 ,获得积分10
9秒前
Logan完成签到,获得积分10
9秒前
舒心雪冥发布了新的文献求助10
9秒前
冰阔罗发布了新的文献求助10
11秒前
阿木木完成签到,获得积分10
12秒前
PQ完成签到,获得积分10
14秒前
17秒前
发呆的小号完成签到 ,获得积分10
18秒前
桂花完成签到 ,获得积分10
19秒前
lu完成签到,获得积分10
19秒前
chenkj完成签到,获得积分10
21秒前
ikun完成签到,获得积分10
21秒前
芝诺的乌龟完成签到 ,获得积分0
21秒前
EricSai完成签到,获得积分10
21秒前
lemon完成签到 ,获得积分10
21秒前
22秒前
星星完成签到,获得积分10
22秒前
澍L完成签到,获得积分10
22秒前
Ava应助舒心雪冥采纳,获得10
23秒前
舅药蛙蛙叫完成签到,获得积分10
23秒前
zyy发布了新的文献求助10
23秒前
研友_85YNe8完成签到,获得积分10
24秒前
King完成签到,获得积分10
24秒前
25秒前
NSGB发布了新的文献求助10
26秒前
期待未来的自己完成签到,获得积分10
26秒前
科目三应助冰阔罗采纳,获得10
26秒前
科研花完成签到 ,获得积分10
27秒前
xr完成签到 ,获得积分10
27秒前
陶军辉完成签到 ,获得积分10
28秒前
天明完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539146
求助须知:如何正确求助?哪些是违规求助? 3116747
关于积分的说明 9326679
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547028
邀请新用户注册赠送积分活动 720734
科研通“疑难数据库(出版商)”最低求助积分说明 712201