计算机科学
过度拟合
自动汇总
序列(生物学)
人工智能
纳克
背景(考古学)
机器学习
克
比例(比率)
语言模型
人工神经网络
物理
古生物学
生物
量子力学
细菌
遗传学
作者
Weizhen Qi,Yongtao Yu,Yeyun Gong,Dayiheng Liu,Nan Duan,Jiusheng Chen,Ruofei Zhang,Ming Zhou
标识
DOI:10.18653/v1/2020.findings-emnlp.217
摘要
This paper presents a new sequence-to-sequence pre-training model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of optimizing one-step-ahead prediction in the traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction that predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large-scale dataset (160GB), respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pre-training corpus.
科研通智能强力驱动
Strongly Powered by AbleSci AI