人工神经网络
计算机科学
遗传算法
人工智能
算法
反向传播
趋同(经济学)
粒子群优化
数学优化
渡线
机器学习
元优化
适应度函数
最优化问题
基于群体的增量学习
进化算法
局部最优
作者
Li Haixia,Li Geng,Huang Zhiyong,Chen Ming
出处
期刊:International Conference on Intelligent Information Processing
日期:2019-11-16
卷期号:: 160-165
被引量:1
标识
DOI:10.1145/3378065.3378096
摘要
In order to improve the accuracy of the BP neural network prediction model to predict the transmission synchronizer shift fault, a BP neural network prediction method based on genetic algorithm optimization is proposed. The characteristics and defects of BP neural network and genetic algorithm are introduced. Further study the relevant technology combining BP neural net-work and genetic algorithm. The genetic algorithm is used to optimize the weight and threshold of BP neural network, and train the BP neural network prediction model to obtain the optimal solution. The advantages of the local search ability of BP-neural network and global search ability of genetic algorithm are fully displayed. The simulation results show that the method has higher accuracy and better nonlinear fitting ability for transmission synchronizer shift fault.
科研通智能强力驱动
Strongly Powered by AbleSci AI