地震道
对数
反射(计算机编程)
滞弹性衰减因子
功能(生物学)
质量(理念)
模式(计算机接口)
干扰(通信)
检波器
地震波
衰减
数学
算法
计算机科学
数学分析
光学
地质学
物理
声学
小波
地震学
程序设计语言
生物
人工智能
频道(广播)
操作系统
进化生物学
量子力学
计算机网络
作者
Ya‐juan Xue,Junxing Cao,Xingjian Wang,Hao‐kun Du
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2020-03-31
卷期号:85 (4): V329-V343
被引量:12
标识
DOI:10.1190/geo2019-0404.1
摘要
Seismic attenuation as represented by the seismic quality factor [Formula: see text] has a substantial impact on seismic reflection data. To effectively eliminate the interference of reflection coefficients for [Formula: see text] estimation, a new method is proposed based on the stationary convolutional model of a seismic trace using variational mode decomposition (VMD). VMD is conducted on the logarithmic spectra extracted from the time-frequency distribution of the seismic reflection data generated from the generalized S transform. For the intrinsic mode functions after VMD, mutual information and correlation analysis are used to reconstruct the signals, which effectively eliminates the influence of the reflection coefficients. The difference between the two reconstructed logarithmic spectra within the selected frequency band produces a better linear property, and it is more suitably approximated with the linear function compared to the conventional spectral-ratio method. Least-squares fitting is finally applied for [Formula: see text] estimation. Application of this method to synthetic and real data examples demonstrates the stabilization and accuracy for [Formula: see text] estimation.
科研通智能强力驱动
Strongly Powered by AbleSci AI