膜蒸馏
材料科学
膜
润湿
碳纳米管
接触角
化学工程
图层(电子)
表面能
纳米技术
复合材料
化学
海水淡化
生物化学
工程类
作者
Yuting Wang,Minyuan Han,Lang Liü,Jun Yao,Le Han
标识
DOI:10.1021/acsami.0c03577
摘要
Robust membrane hydrophobicity is crucial in membrane distillation (MD) to produce clean water, yet challenged by wetting phenomenon. We herein proposed a robust superhydrophobization process, by making use of a carbon nanotube (CNT) intermediate layer over commercial hydrophobic membrane, indirectly grafting the low-surface-energy material 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS), with the achieved membrane denoted as PVDF-CNT-FAS, in systematic comparison with direct grafting FAS on alkalinized PVDF denoted as PVDF-OH-FAS. Superhydrophobicity with water contact angle of 180° was easily achieved from initial hydrophilic interface for both two resultant membranes. Interestingly, the existence of a CNT intermediate layer significantly maintained the stable hydrophobicity in various harsh conditions and improved mechanical properties, at an expense of ca. 20% smaller pore size and extended membrane thickness than PVDF-OH-FAS. In the MD experiment, the PVDF-CNT-FAS exhibited no vapor flux sacrifice, giving constant flux with the control and doubled that for PVDF-OH-FAS. A mass-heat transfer modeling suggested no significant heat loss but facilitated vapor flux with the CNT layer, unlike the impeded transfer for the counterpart membrane. A superior wetting resistance against 0.4 mM SDS further confirmed the benefit of constructing the CNT intermediate layer, presumably because of its excellent slippery property. This study demonstrates the important role of the CNT intermediate layer toward robust superhydrophobic membrane, suggesting the interest of applying the functional nanomaterial for controllable interface design.
科研通智能强力驱动
Strongly Powered by AbleSci AI