A Two-Stage Fall Recognition Algorithm Based on Human Posture Features

支持向量机 人工智能 随机森林 计算机科学 模式识别(心理学) 决策树 可解释性 理论(学习稳定性) 特征(语言学) 预处理器 机器学习 算法 语言学 哲学
作者
Kun Han,Qiongqian Yang,Zefan Huang
出处
期刊:Sensors [MDPI AG]
卷期号:20 (23): 6966-6966 被引量:20
标识
DOI:10.3390/s20236966
摘要

Falls are seriously threatening the health of elderly. In order to reduce the potential danger caused by falls, this paper proposes a two-stage fall recognition algorithm based on human posture features. For preprocessing, we construct the new key features: deflection angles and spine ratio to describe the changes of human posture based on the human skeleton extracted by OpenPose. In the first stage, based on the variables: tendency symbol and steady symbol integrated by the scattered key features, we divide the human body state into three states: stable state, fluctuating state, and disordered state. By analyzing whether the body is in a stable state, the ADL (activities of daily living) actions with high stability can be preliminarily excluded. In the second stage: to further identify the confusing ADL actions and the fall actions, we innovatively design a time-continuous recognition algorithm. When human body is constantly in an unstable state, the human posture features: compare value γ, energy value ε, state score τ are proposed to form a feature vector, and support vector machine (SVM), K nearest neighbors (KNN), decision tree (DT), random forest (RF) are utilized for classification. Experiment results demonstrate that SVM with linear kernel function can distinguish falling actions best and our approach achieved a detection accuracy of 97.34%, precision of 98.50%, and the recall, F1 score are 97.33%, 97.91% respectively. Compared with previous state-of-art algorithms, our algorithm can achieve the highest recognition accuracy. It proves that our fall detection method is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏弋完成签到,获得积分10
2秒前
tong发布了新的文献求助10
2秒前
elle发布了新的文献求助10
6秒前
大模型应助dww采纳,获得10
8秒前
clove完成签到,获得积分10
8秒前
9秒前
希望天下0贩的0应助利好采纳,获得10
12秒前
上官若男应助clove采纳,获得10
13秒前
wulong完成签到,获得积分10
14秒前
14秒前
麦当劳薯条冰激凌完成签到,获得积分10
15秒前
xzc关注了科研通微信公众号
15秒前
传奇3应助elle采纳,获得10
15秒前
flysky120发布了新的文献求助50
16秒前
梦想or现实完成签到,获得积分10
17秒前
zhangxin发布了新的文献求助10
17秒前
Jasper应助wulong采纳,获得10
18秒前
pj发布了新的文献求助10
18秒前
CipherSage应助calm采纳,获得10
19秒前
高挑的不凡完成签到,获得积分10
21秒前
憨憨完成签到,获得积分10
22秒前
23秒前
niandon完成签到,获得积分10
24秒前
彳亍完成签到 ,获得积分10
25秒前
26秒前
充电宝应助pj采纳,获得10
26秒前
26秒前
曙光完成签到,获得积分10
27秒前
诚心的砖头完成签到 ,获得积分10
28秒前
谢昱完成签到,获得积分20
28秒前
kkk完成签到 ,获得积分10
28秒前
Nana发布了新的文献求助30
29秒前
30秒前
AndyLin完成签到,获得积分20
31秒前
谢昱发布了新的文献求助10
31秒前
大胆的草莓完成签到 ,获得积分10
32秒前
活泼的乐枫完成签到,获得积分10
33秒前
南浔完成签到,获得积分10
33秒前
mgl完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023