A Two-Stage Fall Recognition Algorithm Based on Human Posture Features

支持向量机 人工智能 随机森林 计算机科学 模式识别(心理学) 决策树 可解释性 理论(学习稳定性) 特征(语言学) 预处理器 机器学习 算法 语言学 哲学
作者
Kun Han,Qiongqian Yang,Zefan Huang
出处
期刊:Sensors [MDPI AG]
卷期号:20 (23): 6966-6966 被引量:20
标识
DOI:10.3390/s20236966
摘要

Falls are seriously threatening the health of elderly. In order to reduce the potential danger caused by falls, this paper proposes a two-stage fall recognition algorithm based on human posture features. For preprocessing, we construct the new key features: deflection angles and spine ratio to describe the changes of human posture based on the human skeleton extracted by OpenPose. In the first stage, based on the variables: tendency symbol and steady symbol integrated by the scattered key features, we divide the human body state into three states: stable state, fluctuating state, and disordered state. By analyzing whether the body is in a stable state, the ADL (activities of daily living) actions with high stability can be preliminarily excluded. In the second stage: to further identify the confusing ADL actions and the fall actions, we innovatively design a time-continuous recognition algorithm. When human body is constantly in an unstable state, the human posture features: compare value γ, energy value ε, state score τ are proposed to form a feature vector, and support vector machine (SVM), K nearest neighbors (KNN), decision tree (DT), random forest (RF) are utilized for classification. Experiment results demonstrate that SVM with linear kernel function can distinguish falling actions best and our approach achieved a detection accuracy of 97.34%, precision of 98.50%, and the recall, F1 score are 97.33%, 97.91% respectively. Compared with previous state-of-art algorithms, our algorithm can achieve the highest recognition accuracy. It proves that our fall detection method is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
巴巴塔应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
典雅的谷槐完成签到,获得积分10
刚刚
prosperp应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
贪玩的笑阳完成签到,获得积分10
1秒前
2秒前
江城发布了新的文献求助10
2秒前
kevin发布了新的文献求助20
2秒前
菜菜完成签到,获得积分10
2秒前
chillin完成签到 ,获得积分10
3秒前
大壮完成签到,获得积分10
3秒前
3秒前
七七发布了新的文献求助10
3秒前
tu完成签到,获得积分20
3秒前
江任意西完成签到 ,获得积分10
4秒前
4秒前
陈椅子的求学完成签到,获得积分10
4秒前
赘婿应助mcsmdxs采纳,获得10
4秒前
鉴定为寄完成签到,获得积分20
4秒前
FLY完成签到,获得积分10
5秒前
岁月轮回发布了新的文献求助10
5秒前
sakiecon完成签到,获得积分10
5秒前
omo完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
华仔应助留胡子的青柏采纳,获得10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762