Testing lipid markers as predictors of all-cause morbidity, cardiac disease, and mortality risk in captive western lowland gorillas (<i>Gorilla gorilla gorilla</i>)

大猩猩 载脂蛋白B 内科学 医学 脂蛋白 高密度脂蛋白 胆固醇 生理学 疾病 内分泌学 风险因素 人口学 生物 古生物学 社会学
作者
Ashley N. Edes,Janine L. Brown,Katie L. Edwards
出处
期刊:Primate Biology [Copernicus GmbH]
卷期号:7 (2): 41-59 被引量:3
标识
DOI:10.5194/pb-7-41-2020
摘要

Abstract. Great apes and humans develop many of the same health conditions, including cardiac disease as a leading cause of death. In humans, lipid markers are strong predictors of morbidity and mortality risk. To determine if they similarly predict risk in gorillas, we measured five serum lipid markers and calculated three lipoprotein ratios from zoo-housed western lowland gorillas (aged 6–52 years, n=61, subset with routine immobilizations only: n=47): total cholesterol (TC), triglycerides (TGs), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A1 (apoA1), TC∕HDL, LDL∕HDL, and TG∕HDL. We examined each in relation to age and sex, then analyzed whether they predicted all-cause morbidity, cardiac disease, and mortality using generalized linear models (GLMs). Older age was significantly associated with higher TG, TC∕HDL, LDL∕HDL, and TG∕HDL, and lower HDL and apoA1. With all ages combined, compared to females, males had significantly lower TG, TC∕HDL, LDL∕HDL, and TG∕HDL, and higher HDL. Using GLMs, age, sex, and lower LDL∕HDL were significant predictors of all-cause morbidity; this is consistent with research demonstrating lower LDL in humans with arthritis, which was the second most prevalent condition in this sample. In contrast to humans, lipid markers were not better predictors of cardiac disease and mortality risk in gorillas, with cardiac disease best predicted by age and sex alone, and mortality risk only by age. Similar results were observed when multimodel inference was used as an alternative analysis strategy, suggesting it can be used in place of or in addition to traditional methods for predicting risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cui发布了新的文献求助10
1秒前
1秒前
qwer完成签到 ,获得积分10
1秒前
2秒前
稳重的如容完成签到,获得积分10
2秒前
平常的梦完成签到,获得积分10
2秒前
LJY完成签到,获得积分10
2秒前
dongjingbutaire完成签到,获得积分10
2秒前
3秒前
li完成签到,获得积分10
3秒前
3秒前
小豆子完成签到,获得积分20
3秒前
3秒前
孤独巡礼完成签到,获得积分10
3秒前
健康豆芽菜完成签到 ,获得积分10
4秒前
4秒前
duke完成签到,获得积分10
4秒前
mount完成签到,获得积分10
4秒前
akjhd完成签到,获得积分20
4秒前
obtmyx完成签到,获得积分10
4秒前
ydxhh完成签到,获得积分10
4秒前
可爱的函函应助宋嬴一采纳,获得10
5秒前
Criminology34应助舒服的茹嫣采纳,获得10
5秒前
6秒前
研究啥发布了新的文献求助10
6秒前
陆小果完成签到,获得积分10
6秒前
7秒前
Dian完成签到,获得积分10
7秒前
xuan完成签到,获得积分10
8秒前
D调的华丽发布了新的文献求助10
8秒前
落后百褶裙完成签到,获得积分10
8秒前
Re完成签到 ,获得积分10
8秒前
popooo完成签到,获得积分10
8秒前
9秒前
9秒前
wjx发布了新的文献求助10
10秒前
神明完成签到,获得积分10
10秒前
知鸢完成签到,获得积分10
10秒前
lgh完成签到,获得积分10
10秒前
XRQ完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242