勒让德符号
二次剩余
数学
互惠法
二次型二进制
二次场
二次方程
用连分式解二次方程
代数数论
模
二次高斯和
ε-二次型
域代数上的
纯数学
离散数学
二次函数
高斯
数学分析
代数数
物理
量子力学
几何学
作者
Kifah Abbas Malik,Najlae Falah Hameed Al Saffar
标识
DOI:10.1080/09720529.2020.1811449
摘要
In the number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. It noticed by Euler and Legendre and proved by Gauss. In this paper, we will study the quadratic reciprocity law theorem where the Euler Criterion and Legendre Symbol are involved. The application of quadratic reciprocity law theorem is given in cryptography, where the Quadratic Residuosity Problem considered as a hard mathematical problem for Goldwasser Micali Randomized Public Key Cryptosystem. This system will be discussed with the details in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI