A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current

电池(电) 电池容量 锂离子电池 航程(航空) 计算机科学 汽车工程 功率(物理) 灰色关联分析 容量损失 练习场 锂(药物) 模拟 材料科学 工程类 数学 统计 医学 物理 量子力学 复合材料 内分泌学
作者
Tingting Xu,Zhen Peng,Lifeng Wu
出处
期刊:Energy [Elsevier BV]
卷期号:218: 119530-119530 被引量:51
标识
DOI:10.1016/j.energy.2020.119530
摘要

Accurate health status estimation and capacity prediction of lithium-ion batteries are important means to prevent a series of problems such as capacity loss, driving range and safety accidents caused by the aging of batteries. Research on battery capacity prediction based on constant discharge rate has become increasingly mature. However, as the main power source for electric vehicles, discharge current of lithium-ion battery is constantly changed by the influence of time-varying vehicle speed. Considering the effect of random variable current (RVC) discharge on battery capacity degradation, a novel predicting method for circulating capacity of lithium-ion battery is proposed. Firstly, features are extracted from the battery charging and discharging process. Secondly, the correlation between features and battery capacity is analyzed by using the grey relational analysis, and features with the higher correlation coefficient are selected as final health features. Thirdly, the online sequential extreme learning machine optimized by beetle antenna search is proposed and used to predict capacity of lithium-ion battery. Experimental results show that the minimum battery capacity RMSE predicted is 1.0294, and the cycle capacity error is mostly within the range of -3mAh∼3mAh, which proves that the method can more accurately estimate the capacity of lithium-ion batteries under RVC conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
李健应助巴巴塔采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
栗子发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Andy_Cheung应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Andy_Cheung应助科研通管家采纳,获得10
2秒前
曲奇饼干应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得30
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
特立独行的土豆完成签到,获得积分10
5秒前
田様应助雨琴采纳,获得10
5秒前
aji发布了新的文献求助10
5秒前
白门小强完成签到,获得积分10
6秒前
丘比特应助66666采纳,获得10
7秒前
XY关注了科研通微信公众号
8秒前
隐形曼青应助冷酷的雪柳采纳,获得30
9秒前
9秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738035
求助须知:如何正确求助?哪些是违规求助? 3281550
关于积分的说明 10025988
捐赠科研通 2998302
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782660
科研通“疑难数据库(出版商)”最低求助积分说明 749882