曲面重建
密度泛函理论
催化作用
材料科学
Atom(片上系统)
晶格平面
原位
纳米颗粒
热稳定性
金属
电化学
化学工程
纳米技术
物理化学
氧化还原
化学
曲面(拓扑)
计算化学
电极
冶金
衍射
嵌入式系统
工程类
物理
光学
有机化学
互易晶格
生物化学
计算机科学
数学
几何学
作者
Ningqiang Zhang,Xinxin Zhang,Lei Tao,Peng Jiang,Chenliang Ye,Rui Lin,Zhiwei Huang,Ang Li,Dawei Pang,Han Yan,Yu Wang,Peng Xu,Sufeng An,Qinghua Zhang,Licheng Liu,Shixuan Du,Xiaodong Han,Dingsheng Wang,Yadong Li
标识
DOI:10.1002/anie.202014718
摘要
Abstract We report an Ag 1 single‐atom catalyst (Ag 1 /MnO 2 ), which was synthesized from thermal transformation of Ag nanoparticles (NPs) and surface reconstruction of MnO 2 . The evolution process of Ag NPs to single atoms is firstly revealed by various techniques, including in situ ETEM, in situ XRD and DFT calculations. The temperature‐induced surface reconstruction process from the MnO 2 (211) to (310) lattice plane is critical to firmly confine the existing surface of Ag single atoms; that is, the thermal treatment and surface reconstruction of MnO 2 is the driving force for the formation of single Ag atoms. The as‐obtained Ag 1 /MnO 2 achieved 95.7 % Faradic efficiency at −0.85 V vs. RHE, and coupled with long‐term stability for electrochemical CO 2 reduction reaction (CO 2 RR). DFT calculations indicated single Ag sites possessed high electronic density close to Fermi Level and could act exclusively as the active sites in the CO 2 RR. As a result, the Ag 1 /MnO 2 catalyst demonstrated remarkable performance for the CO 2 RR, far surpassing the conventional Ag nanosized catalyst (Ag NP /MnO 2 ) and other reported Ag‐based catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI