High-Performance Large-Scale Image Recognition Without Normalization

规范化(社会学) 计算机科学 人工智能 模式识别(心理学) 比例(比率) 计算机视觉 地理 地图学 社会科学 社会学
作者
Andrew Brock,Soham De,Samuel Smith,Karen Simonyan
出处
期刊:Cornell University - arXiv 被引量:220
标识
DOI:10.48550/arxiv.2102.06171
摘要

Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at https://github.com/deepmind/ deepmind-research/tree/master/nfnets

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
心灵美草丛完成签到,获得积分10
3秒前
652183758完成签到 ,获得积分10
4秒前
6秒前
热带蚂蚁完成签到 ,获得积分10
6秒前
1002SHIB完成签到,获得积分10
9秒前
10秒前
10秒前
nihaolaojiu完成签到,获得积分10
10秒前
sheetung完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
麦田麦兜完成签到,获得积分10
12秒前
洋洋发布了新的文献求助20
14秒前
lling完成签到 ,获得积分10
17秒前
18秒前
Lny发布了新的文献求助20
20秒前
孟寐以求完成签到 ,获得积分10
25秒前
1111完成签到 ,获得积分10
28秒前
su完成签到 ,获得积分0
30秒前
wBw完成签到,获得积分0
31秒前
耍酷寻双完成签到 ,获得积分10
40秒前
善良的蛋挞完成签到,获得积分10
41秒前
FFFFFF完成签到 ,获得积分10
43秒前
Moonchild完成签到 ,获得积分10
44秒前
陈M雯完成签到 ,获得积分10
46秒前
50秒前
枯叶蝶完成签到 ,获得积分10
56秒前
上官若男应助洋洋采纳,获得10
59秒前
Judy完成签到 ,获得积分0
1分钟前
鱼儿游完成签到 ,获得积分10
1分钟前
迷你的夜天完成签到 ,获得积分10
1分钟前
感性的俊驰完成签到 ,获得积分10
1分钟前
wr781586完成签到 ,获得积分10
1分钟前
eyu完成签到,获得积分10
1分钟前
airtermis完成签到 ,获得积分10
1分钟前
eeeeeeenzyme完成签到 ,获得积分10
1分钟前
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029