Online available bandwidth estimation using multiclass supervised learning techniques

计算机科学 人工智能 机器学习 半监督学习 多类分类 监督学习 支持向量机 在线学习 在线算法 分类器(UML)
作者
Sukhpreet Kaur Khangura,Sami Akin
出处
期刊:Computer Communications [Elsevier BV]
卷期号:170: 177-189 被引量:1
标识
DOI:10.1016/j.comcom.2021.02.009
摘要

Abstract In order to answer how much bandwidth is available to an application from one end to another in a network, state-of-the-art estimation techniques, based on active probing, inject artificial traffic with a known structure into the network. At the receiving end, the available bandwidth is estimated by measuring the structural changes in the injected traffic, which are caused by the network path. However, bandwidth estimation becomes difficult when packet distributions are distorted by non-fluid bursty cross traffic and multiple links. This eventually leads to an estimation bias. One known approach to reduce the bias in bandwidth estimations is to probe a network with constant-rate packet trains and measure the average structural changes in them. However, one cannot increase the number of packet trains in a designated time period as much as needed because high probing intensity overloads the network and results in packet losses in probe and cross traffic, which distorts probe packet gaps and inflicts more bias. In this work, we propose a machine learning-based, particularly classification-based, method that provides reliable estimates utilizing fewer packet trains. Then, we implement supervised learning techniques. Furthermore, considering the correlated changes over time in traffic in a network, we apply filtering techniques on estimation results in order to track the changes in the available bandwidth. We set up an experimental testbed using the Emulab software and a dumbbell topology in order to create training and testing data for performance analysis. Our results reveal that our proposed method identifies the available bandwidth significantly well in single-link networks as well as networks with heavy cross traffic burstiness and multiple links. It is also able to estimate the available bandwidth in randomly generated networks where the network capacity and the cross traffic intensity vary substantially. We also compare our technique with the others that use direct probing and regression approaches, and show that ours has better performance in terms of standard deviation around the actual bandwidth values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安若剑完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助50
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
顾矜应助司空元正采纳,获得10
4秒前
oldblack发布了新的文献求助50
6秒前
Ferry发布了新的文献求助10
7秒前
SCI硬通货发布了新的文献求助10
8秒前
共享精神应助w1x2123采纳,获得10
8秒前
茁长的树苗完成签到 ,获得积分10
8秒前
8秒前
可yi完成签到,获得积分10
9秒前
Yongander完成签到,获得积分10
9秒前
9秒前
小二郎应助忘尘采纳,获得10
9秒前
英俊的铭应助liuxian采纳,获得10
10秒前
Mxaxxxx发布了新的文献求助10
11秒前
12秒前
在水一方应助oleskarabach采纳,获得10
12秒前
14秒前
14秒前
cccf发布了新的文献求助10
15秒前
Zewen_Li应助研友_LJGOan采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
烤乳猪发布了新的文献求助10
17秒前
难过以晴发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
lmd250909完成签到,获得积分10
20秒前
20秒前
国家一级保护废物点心完成签到,获得积分10
21秒前
李健的粉丝团团长应助cccf采纳,获得100
22秒前
GUIGUI发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408