Online available bandwidth estimation using multiclass supervised learning techniques

计算机科学 人工智能 机器学习 半监督学习 多类分类 监督学习 支持向量机 在线学习 在线算法 分类器(UML)
作者
Sukhpreet Kaur Khangura,Sami Akin
出处
期刊:Computer Communications [Elsevier]
卷期号:170: 177-189 被引量:1
标识
DOI:10.1016/j.comcom.2021.02.009
摘要

Abstract In order to answer how much bandwidth is available to an application from one end to another in a network, state-of-the-art estimation techniques, based on active probing, inject artificial traffic with a known structure into the network. At the receiving end, the available bandwidth is estimated by measuring the structural changes in the injected traffic, which are caused by the network path. However, bandwidth estimation becomes difficult when packet distributions are distorted by non-fluid bursty cross traffic and multiple links. This eventually leads to an estimation bias. One known approach to reduce the bias in bandwidth estimations is to probe a network with constant-rate packet trains and measure the average structural changes in them. However, one cannot increase the number of packet trains in a designated time period as much as needed because high probing intensity overloads the network and results in packet losses in probe and cross traffic, which distorts probe packet gaps and inflicts more bias. In this work, we propose a machine learning-based, particularly classification-based, method that provides reliable estimates utilizing fewer packet trains. Then, we implement supervised learning techniques. Furthermore, considering the correlated changes over time in traffic in a network, we apply filtering techniques on estimation results in order to track the changes in the available bandwidth. We set up an experimental testbed using the Emulab software and a dumbbell topology in order to create training and testing data for performance analysis. Our results reveal that our proposed method identifies the available bandwidth significantly well in single-link networks as well as networks with heavy cross traffic burstiness and multiple links. It is also able to estimate the available bandwidth in randomly generated networks where the network capacity and the cross traffic intensity vary substantially. We also compare our technique with the others that use direct probing and regression approaches, and show that ours has better performance in terms of standard deviation around the actual bandwidth values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静冰双发布了新的文献求助10
刚刚
刚刚
白夜完成签到 ,获得积分10
刚刚
Henry完成签到,获得积分10
1秒前
追风的人偶完成签到 ,获得积分10
2秒前
想不想完成签到 ,获得积分10
2秒前
cabbage008完成签到,获得积分10
2秒前
弄香完成签到,获得积分10
2秒前
科研谢啦发布了新的文献求助10
2秒前
木_1123发布了新的文献求助10
4秒前
各个器官完成签到,获得积分10
4秒前
首席医官完成签到,获得积分10
5秒前
真君山山长完成签到,获得积分10
5秒前
Phosphene应助北城无夏采纳,获得10
5秒前
隐形曼青应助阿戴采纳,获得10
8秒前
隐形的铭关注了科研通微信公众号
9秒前
科研谢啦完成签到,获得积分10
11秒前
12秒前
xiaoqiang发布了新的文献求助20
13秒前
深情安青应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
kk应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
kk应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
1104481279发布了新的文献求助10
17秒前
Hello应助zhangyannini采纳,获得10
17秒前
光亮的城完成签到 ,获得积分10
21秒前
冷静冰双完成签到,获得积分20
21秒前
22秒前
23秒前
23秒前
1104481279完成签到,获得积分10
24秒前
wang完成签到,获得积分20
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079