Online available bandwidth estimation using multiclass supervised learning techniques

计算机科学 人工智能 机器学习 半监督学习 多类分类 监督学习 支持向量机 在线学习 在线算法 分类器(UML)
作者
Sukhpreet Kaur Khangura,Sami Akin
出处
期刊:Computer Communications [Elsevier]
卷期号:170: 177-189 被引量:1
标识
DOI:10.1016/j.comcom.2021.02.009
摘要

Abstract In order to answer how much bandwidth is available to an application from one end to another in a network, state-of-the-art estimation techniques, based on active probing, inject artificial traffic with a known structure into the network. At the receiving end, the available bandwidth is estimated by measuring the structural changes in the injected traffic, which are caused by the network path. However, bandwidth estimation becomes difficult when packet distributions are distorted by non-fluid bursty cross traffic and multiple links. This eventually leads to an estimation bias. One known approach to reduce the bias in bandwidth estimations is to probe a network with constant-rate packet trains and measure the average structural changes in them. However, one cannot increase the number of packet trains in a designated time period as much as needed because high probing intensity overloads the network and results in packet losses in probe and cross traffic, which distorts probe packet gaps and inflicts more bias. In this work, we propose a machine learning-based, particularly classification-based, method that provides reliable estimates utilizing fewer packet trains. Then, we implement supervised learning techniques. Furthermore, considering the correlated changes over time in traffic in a network, we apply filtering techniques on estimation results in order to track the changes in the available bandwidth. We set up an experimental testbed using the Emulab software and a dumbbell topology in order to create training and testing data for performance analysis. Our results reveal that our proposed method identifies the available bandwidth significantly well in single-link networks as well as networks with heavy cross traffic burstiness and multiple links. It is also able to estimate the available bandwidth in randomly generated networks where the network capacity and the cross traffic intensity vary substantially. We also compare our technique with the others that use direct probing and regression approaches, and show that ours has better performance in terms of standard deviation around the actual bandwidth values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨月白完成签到,获得积分10
刚刚
binbin完成签到,获得积分10
2秒前
危机的冰旋完成签到 ,获得积分10
3秒前
小苏发布了新的文献求助10
3秒前
堀江真夏完成签到 ,获得积分10
5秒前
如意书桃完成签到 ,获得积分10
5秒前
6秒前
rui完成签到,获得积分10
7秒前
yx完成签到,获得积分10
7秒前
实验室同学完成签到,获得积分10
8秒前
孤独的鹏飞完成签到 ,获得积分10
8秒前
隐形曼青应助害羞映容采纳,获得30
8秒前
搜集达人应助han采纳,获得10
10秒前
xingyi完成签到,获得积分10
10秒前
求助人员应助Yaya采纳,获得10
11秒前
乂氼发布了新的文献求助10
11秒前
火星上立果完成签到,获得积分10
11秒前
csx应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
csx应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
joysa完成签到,获得积分10
15秒前
nano完成签到 ,获得积分10
15秒前
HY完成签到,获得积分10
17秒前
hecarli完成签到,获得积分0
17秒前
19秒前
springwyc发布了新的文献求助10
21秒前
sx666完成签到 ,获得积分10
22秒前
青衣完成签到,获得积分10
22秒前
科研通AI6应助keke采纳,获得20
22秒前
咿呀喂完成签到,获得积分10
22秒前
26秒前
NexusExplorer应助anne采纳,获得10
26秒前
aabsd完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565308
求助须知:如何正确求助?哪些是违规求助? 4650285
关于积分的说明 14690505
捐赠科研通 4592196
什么是DOI,文献DOI怎么找? 2519466
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463172