Online available bandwidth estimation using multiclass supervised learning techniques

计算机科学 人工智能 机器学习 半监督学习 多类分类 监督学习 支持向量机 在线学习 在线算法 分类器(UML)
作者
Sukhpreet Kaur Khangura,Sami Akin
出处
期刊:Computer Communications [Elsevier BV]
卷期号:170: 177-189 被引量:1
标识
DOI:10.1016/j.comcom.2021.02.009
摘要

Abstract In order to answer how much bandwidth is available to an application from one end to another in a network, state-of-the-art estimation techniques, based on active probing, inject artificial traffic with a known structure into the network. At the receiving end, the available bandwidth is estimated by measuring the structural changes in the injected traffic, which are caused by the network path. However, bandwidth estimation becomes difficult when packet distributions are distorted by non-fluid bursty cross traffic and multiple links. This eventually leads to an estimation bias. One known approach to reduce the bias in bandwidth estimations is to probe a network with constant-rate packet trains and measure the average structural changes in them. However, one cannot increase the number of packet trains in a designated time period as much as needed because high probing intensity overloads the network and results in packet losses in probe and cross traffic, which distorts probe packet gaps and inflicts more bias. In this work, we propose a machine learning-based, particularly classification-based, method that provides reliable estimates utilizing fewer packet trains. Then, we implement supervised learning techniques. Furthermore, considering the correlated changes over time in traffic in a network, we apply filtering techniques on estimation results in order to track the changes in the available bandwidth. We set up an experimental testbed using the Emulab software and a dumbbell topology in order to create training and testing data for performance analysis. Our results reveal that our proposed method identifies the available bandwidth significantly well in single-link networks as well as networks with heavy cross traffic burstiness and multiple links. It is also able to estimate the available bandwidth in randomly generated networks where the network capacity and the cross traffic intensity vary substantially. We also compare our technique with the others that use direct probing and regression approaches, and show that ours has better performance in terms of standard deviation around the actual bandwidth values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓生完成签到,获得积分10
刚刚
科研界小学生完成签到,获得积分20
1秒前
1秒前
佳语妍说发布了新的文献求助10
2秒前
标致绮露发布了新的文献求助20
3秒前
er发布了新的文献求助10
4秒前
丘比特应助小机灵采纳,获得10
5秒前
小川完成签到,获得积分10
5秒前
是昔流芳完成签到 ,获得积分10
5秒前
坠兔收月完成签到,获得积分10
6秒前
7秒前
乐乐应助哈哈哈采纳,获得10
8秒前
Billy应助风趣青槐采纳,获得30
9秒前
11秒前
调皮鱼发布了新的文献求助10
12秒前
CodeCraft应助专注的醉波采纳,获得10
12秒前
GingerF应助雪山飞龙采纳,获得10
13秒前
愉快向彤完成签到 ,获得积分10
13秒前
14秒前
赘婿应助科yt采纳,获得10
15秒前
天天快乐应助清脆松采纳,获得10
16秒前
wjy应助SteveRogers采纳,获得10
17秒前
17秒前
上官若男应助nana湘采纳,获得10
18秒前
18秒前
HOO完成签到,获得积分10
18秒前
烟花应助kangyz采纳,获得10
19秒前
打打应助纸鸢采纳,获得10
19秒前
FF完成签到 ,获得积分10
20秒前
调皮鱼完成签到,获得积分10
21秒前
小机灵发布了新的文献求助10
21秒前
哈哈哈发布了新的文献求助10
21秒前
SciGPT应助李萌采纳,获得10
21秒前
勤恳的月饼完成签到,获得积分10
24秒前
24秒前
Aurora发布了新的文献求助10
25秒前
28秒前
111发布了新的文献求助20
28秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976