作者
Roozbeh Salary,Jack P. Lombardi,Darshana L. Weerawarne,Prahalada Rao,Mark D. Poliks
摘要
Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designs in addition to accurate measurements, obtained from 3D X-ray micro-computed tomography (μ-CT) imaging. The entire volume of the constructed geometries was subsequently meshed using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach, based on the density-based and pressure-based Navier–Stokes formation, was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (i.e., 10−6). Turbulence was modeled using the realizable k-ε viscous model with scalable wall functions. A coupled two-phase flow model was, in addition, set up to track a large number of injected particles. The boundary conditions of the CFD model were defined based on experimental sensor data, recorded from the AJP control system. The accuracy of the model was validated using a factorial experiment, composed of AJ-deposition of a silver nanoparticle ink on a polyimide substrate. The outcomes of this study pave the way for the implementation of physics-driven in situ monitoring and control of AJP.