计算机科学
联营
卷积神经网络
人工智能
图像(数学)
上下文图像分类
模式识别(心理学)
编码(集合论)
深度学习
计算机视觉
集合(抽象数据类型)
程序设计语言
作者
Xin Xing,Gongbo Liang,Hunter Blanton,Muhammad Usman Rafique,Chris Wang,Ai‐Ling Lin,Nathan Jacobs
标识
DOI:10.1007/978-3-030-66415-2_23
摘要
We propose to apply a 2D CNN architecture to 3D MRI image Alzheimer’s disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves $$9.5\%$$ better Alzheimer’s disease classification accuracy than the baseline 3D models. We also show that our method allows for efficient training, requiring only $$20\%$$ of the training time compared to 3D CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project .
科研通智能强力驱动
Strongly Powered by AbleSci AI