无氧运动
微生物种群生物学
微囊藻毒素
蓝藻
生物
环境化学
假单胞菌
微生物学
植物
细菌
化学
生理学
遗传学
作者
Qin Ding,Kaiyan Liu,Zhiquan Song,Rongli Sun,Juan Zhang,Lihong Yin,Yuepu Pu
出处
期刊:Toxins
[MDPI AG]
日期:2020-03-15
卷期号:12 (3): 183-183
被引量:18
标识
DOI:10.3390/toxins12030183
摘要
Microcystins (MCs), which are produced by harmful cyanobacteria blooms, pose a serious threat to environmental health. However, the effect of MCs on the bacterial community under anaerobic conditions is still unclear. This study examined the dynamic changes of MC-degrading capacity, metabolic activity, and structure of the bacterial community in lake sediment repeatedly treated with 1 mg/L microcystin-LR (MC-LR) under anaerobic conditions. The results showed that the MC-degrading capacity of the bacterial community was increased nearly three-fold with increased treatment frequency. However, the metabolic profile behaved in exactly opposite trend, in which the overall carbon metabolic activity was inhibited by repeated toxin addition. Microbial diversity was suppressed by the first addition of MC-LR and then gradually recovered. The 16S amplicon sequencing showed that the dominant genera were changed from Exiguobacterium and Acinetobacter to Prosthecobacter, Dechloromonas, and Agrobacterium. Furthermore, the increase in the relative abundance of Dechloromonas, Pseudomonas, Hydrogenophaga, and Agrobacterium was positively correlated with the MC-LR treatment times. This indicates that they might be responsible for MC degradation under anaerobic conditions. Our findings reveal the relationship between MC-LR and the sediment bacterial community under anaerobic conditions and indicate that anaerobic biodegradation is an effective and promising method to remediate MCs pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI