Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells

富勒烯 阴极 工作职能 材料科学 化学工程 能量转换效率 化学 纳米技术 光电子学 图层(电子) 有机化学 物理化学 工程类
作者
Lingbo Jia,Bairu Li,Yanbo Shang,Muqing Chen,Guan‐Wu Wang,Shangfeng Yang
出处
期刊:Organic Electronics [Elsevier BV]
卷期号:82: 105726-105726 被引量:12
标识
DOI:10.1016/j.orgel.2020.105726
摘要

Fullerene derivatives especially [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with strong electron-accepting abilities have been commonly implemented as indispensable cathode buffer layers (CBLs) of inverted (p-i-n) planar perovskite solar cells (iPSCs) to facilitate electron transport. However, only a single fullerene CBL is typically used in iPSC devices, resulting in interfacial energy offset between fullerene CBL and metal cathode and consequently insufficient electron transport. Herein, we synthesized a novel bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) and applied it as an auxiliary fullerene interlayer atop of PCBM to form a PCBM/PCBDMAM double fullerene CBL, leading to dramatic enhancement of both efficiency and ambient stability of iPSC devices. Incorporation of PCBDMAM interlayer facilitates the formation of interfacial dipole layer between PCBM and Ag cathode, resulting in decrease of the work function of the Ag cathode. As a result, the CH3NH3PbI3 (MAPbI3) iPSC devices based on PCBM/PCBDMAM double fullerene CBL exhibit the highest power conversion efficiency (PCE) of 18.11%, which is drastically higher than that of the control device based on single PCBM CBL (14.21%) and represents the highest value reported for double fullerene CBL-based iPSC devices. Moreover, due to the higher hydrophobicity of PCBDMAM than PCBM, iPSC devices based on PCBM/PCBDMAM double fullerene CBL shows an enhanced ambient stability, retaining 67% of the initial PCE after storage 1440 h exposure under the ambient atmosphere without any encapsulation, whereas only 43% retaining was achieved for the control device based on single PCBM CBL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZIVON完成签到,获得积分10
1秒前
YEEze发布了新的文献求助10
1秒前
泥泞完成签到 ,获得积分10
2秒前
2秒前
lmkpx完成签到,获得积分10
2秒前
nan应助scijrwhite采纳,获得10
2秒前
szw完成签到,获得积分10
2秒前
MINGHUI发布了新的文献求助10
3秒前
犹豫钥匙完成签到,获得积分10
4秒前
5秒前
iehaoang完成签到 ,获得积分10
5秒前
YSL发布了新的文献求助10
6秒前
penguo应助清沧炽魂采纳,获得10
7秒前
地学韦丰吉司长完成签到,获得积分10
7秒前
Akim应助热心白枫采纳,获得10
7秒前
cyyyyyyyyyy完成签到,获得积分10
8秒前
大美女完成签到,获得积分10
9秒前
hj完成签到,获得积分10
10秒前
QIUQIU0916完成签到 ,获得积分10
11秒前
11秒前
可靠代丝完成签到,获得积分10
11秒前
Hello应助YEEze采纳,获得10
11秒前
中岛悠斗完成签到,获得积分10
12秒前
犹豫钥匙发布了新的文献求助10
12秒前
今后应助YSL采纳,获得10
12秒前
hui完成签到,获得积分10
13秒前
土土完成签到,获得积分10
14秒前
俭朴夜雪完成签到,获得积分10
14秒前
柏林寒冬应助hj采纳,获得10
15秒前
打打应助默默的天德采纳,获得10
15秒前
JSEILWQ完成签到 ,获得积分10
16秒前
给你寄春天完成签到 ,获得积分10
16秒前
lxh完成签到 ,获得积分10
17秒前
潇洒的诗桃完成签到,获得积分0
18秒前
Arrhenius完成签到,获得积分10
18秒前
羊村冉大王关注了科研通微信公众号
18秒前
19秒前
雨香完成签到,获得积分10
19秒前
xiao完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213267
求助须知:如何正确求助?哪些是违规求助? 4389144
关于积分的说明 13666133
捐赠科研通 4250090
什么是DOI,文献DOI怎么找? 2331905
邀请新用户注册赠送积分活动 1329586
关于科研通互助平台的介绍 1283167