Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells

富勒烯 阴极 工作职能 材料科学 化学工程 能量转换效率 化学 纳米技术 光电子学 图层(电子) 有机化学 物理化学 工程类
作者
Lingbo Jia,Bairu Li,Yanbo Shang,Muqing Chen,Guan‐Wu Wang,Shangfeng Yang
出处
期刊:Organic Electronics [Elsevier]
卷期号:82: 105726-105726 被引量:12
标识
DOI:10.1016/j.orgel.2020.105726
摘要

Fullerene derivatives especially [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with strong electron-accepting abilities have been commonly implemented as indispensable cathode buffer layers (CBLs) of inverted (p-i-n) planar perovskite solar cells (iPSCs) to facilitate electron transport. However, only a single fullerene CBL is typically used in iPSC devices, resulting in interfacial energy offset between fullerene CBL and metal cathode and consequently insufficient electron transport. Herein, we synthesized a novel bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) and applied it as an auxiliary fullerene interlayer atop of PCBM to form a PCBM/PCBDMAM double fullerene CBL, leading to dramatic enhancement of both efficiency and ambient stability of iPSC devices. Incorporation of PCBDMAM interlayer facilitates the formation of interfacial dipole layer between PCBM and Ag cathode, resulting in decrease of the work function of the Ag cathode. As a result, the CH3NH3PbI3 (MAPbI3) iPSC devices based on PCBM/PCBDMAM double fullerene CBL exhibit the highest power conversion efficiency (PCE) of 18.11%, which is drastically higher than that of the control device based on single PCBM CBL (14.21%) and represents the highest value reported for double fullerene CBL-based iPSC devices. Moreover, due to the higher hydrophobicity of PCBDMAM than PCBM, iPSC devices based on PCBM/PCBDMAM double fullerene CBL shows an enhanced ambient stability, retaining 67% of the initial PCE after storage 1440 h exposure under the ambient atmosphere without any encapsulation, whereas only 43% retaining was achieved for the control device based on single PCBM CBL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙泉发布了新的文献求助10
刚刚
金乌完成签到 ,获得积分10
1秒前
彭于晏应助吉不得采纳,获得10
1秒前
孤傲的静脉完成签到,获得积分10
1秒前
1秒前
远方完成签到 ,获得积分10
1秒前
华仔应助王艺霖采纳,获得10
1秒前
1秒前
昭昭如愿完成签到,获得积分20
1秒前
2秒前
luluzheng应助PDIF-CN2采纳,获得10
2秒前
火柴two发布了新的文献求助10
2秒前
3秒前
初夏的百褶裙完成签到,获得积分10
3秒前
cruel发布了新的文献求助10
3秒前
3秒前
ppat5012发布了新的文献求助10
3秒前
pengliao完成签到,获得积分10
3秒前
魏士博发布了新的文献求助10
3秒前
田所浩二完成签到 ,获得积分10
4秒前
5秒前
华仔应助zhdan采纳,获得10
5秒前
ghhhn完成签到,获得积分10
5秒前
7秒前
皮皮怪完成签到,获得积分10
7秒前
7秒前
FIB菜狗发布了新的文献求助10
7秒前
火柴two完成签到,获得积分10
7秒前
旺旺发布了新的文献求助10
8秒前
共享精神应助奋斗的秋珊采纳,获得10
8秒前
8秒前
ICBC完成签到 ,获得积分10
8秒前
连夜雪完成签到,获得积分10
8秒前
小蘑菇应助smjjs采纳,获得20
8秒前
天天快乐应助困困小馒头采纳,获得10
8秒前
俭朴尔白发布了新的文献求助30
8秒前
licheng完成签到,获得积分10
8秒前
Owen应助疯狂的洋葱采纳,获得30
9秒前
王通发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444