[A comparative study on SaTScan and FleXScan software for spatial clustering analysis regarding the incidence of pulmonary tuberculosis].

入射(几何) 聚类分析 地理信息系统 地理 泊松回归 泊松分布 医学 地图学 环境卫生 统计 数学 人口 几何学
作者
Ting Li,Jinge He,Changhong Yang,Jing Li,Youchao Xiao,Yunkui Li,Chuang Chen,Jianlin Wu
出处
期刊:PubMed 卷期号:41 (2): 207-212 被引量:2
标识
DOI:10.3760/cma.j.issn.0254-6450.2020.02.013
摘要

Objective: To detect the spatial clustering and high risk areas of pulmonary tuberculosis (PTB) in Sichuan province in 2018 and, to compare the effects of application on both SaTScan 9.4.1 software and FleXScan 3.1.2 software to detect the PTB spatial clusters. Methods: Geographic information database was established by using the incidence data of PTB and demographic data reported in the 'China disease prevention of infectious disease reporting information management system' in Sichuan province in 2018. Spatial clustering analysis was conducted using the Poisson model in software SaTScan 9.4.1 and FleXScan 3.1.2 to detect the high risk areas of PTB by software ArcGIS 10.5. Differences of clusters locations and scopes in the two scanning methods were compared. Results: The reported incidence rate of PTB was 57.34/100 000 (47 601 cases) in Sichuan province in 2018, presenting an obvious clustering distribution. SaTScan and FleXScan scanned 8 and 10 clusters showed statistically significant differences (P<0.05), with log-likelihood ratio (LLR) as 24.62-2 416.05 and 1.48-2 618.96, respectively. Results from scanning of the two methods showed that the most likely clusters appeared in the Daliangshan and Xiaoliangshan of Liangshan Yi ethnic aggregation areas. The other clustering areas would include some minority areas in the western Sichuan plateau, detected by both two methods differences in the shape and scope of the clustering were detected by both methods. The clustering scopes detected by SaTScan covered some counties, in which the actual incidence was not high. FleXScan could distinguish the clusters and detect more irregular shaped clusters. Conclusions: Obvious spatial clusters of PTB distribution were found in Sichuan in 2018. Areas of Daliangshan, Xiaoliangshan and the minority areas in Western Sichuan plateau appeared at high risk, suggesting these were the key areas for prevention and control. FleXScan seemed more conducive in accurately distinguishing the "cold spot" areas in the highly aggregated areas, and more suitable for the application of spatial clustering detection for TB, in Sichuan province.目的: 探测2018年四川省肺结核发病的空间聚集性,识别高风险区域;比较SaTScan与FleXScan软件扫描统计量法在肺结核空间聚集性探测方面的应用效果。 方法: 基于中国疾病预防控制信息系统传染病报告信息管理系统中四川省181个县(区)2018年肺结核疫情数据和人口数据,建立地理信息数据库,分别采用SaTScan 9.4.1和FleXScan 3.1.2软件中的Poisson模型探测肺结核发病聚集区域,比较2种方法探测到的聚集区域的位置和范围,通过ArcGIS 10.5软件进行可视化。 结果: 2018年四川省肺结核报告发病率为57.34/10万(47 601例),呈明显的聚集性分布。SaTScan和FleXScan软件分别扫描到8个和10个具有统计学意义( P<0.05)的空间聚集区域,对数似然比(log-likelihood ratio,LLR)分别为24.62~2 416.05和1.48~2 618.96。2种方法的扫描结果中一级聚集区均覆盖了大、小凉山地区,即彝族聚居区,二级聚集区共同覆盖了部分川西高原少数民族地区。二者在扫描出的聚集区域形状和范围上有所差异。SaTScan的聚集区覆盖了部分实际发病情况并不高的县(区),而FleXScan能将其从聚集区中区分出来,探测出更准确的不规则形状聚集区。 结论: 四川省肺结核疫情存在明显的空间聚集性,大、小凉山地区和川西高原少数民族地区是高风险和重点防控区域。FleXScan更利于精准区分高聚集性区域中的"冷点"地区,更适合在四川省肺结核聚集性探测中应用。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hobowei采纳,获得10
2秒前
可爱奇异果完成签到 ,获得积分10
2秒前
wang发布了新的文献求助10
3秒前
太空人完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
5秒前
该睡觉啦完成签到,获得积分20
5秒前
5秒前
莫x莫完成签到 ,获得积分10
7秒前
loewy完成签到,获得积分10
7秒前
黄婷发布了新的文献求助10
7秒前
7秒前
yuan完成签到,获得积分10
7秒前
zho发布了新的文献求助10
7秒前
7秒前
苏苏完成签到,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得80
8秒前
Hello应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
万能图书馆应助内向秋寒采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
zzzq应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得30
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
soso应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794