SoyNet: Soybean leaf diseases classification

卷积神经网络 人工智能 深度学习 计算机科学 人口 植物病害 领域(数学) 鉴定(生物学) F1得分 机器学习 模式识别(心理学) 生物 农业工程 数学 生物技术 工程类 植物 人口学 社会学 纯数学
作者
Aditya Karlekar,Ayan Seal
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:172: 105342-105342 被引量:180
标识
DOI:10.1016/j.compag.2020.105342
摘要

According to studies, the human population would cross 9 billion by 2050 and the food demand would increase by 60%. Therefore, increasing and improving the quality of the crop yield is a major field of interest. Recently, infectious biotic and abiotic diseases reduce the potential yield by an average of 40% with many farmers in the developing world experiencing yield losses as high as 100%. Farmers worldwide deal with the issue of plant diseases diagnosis and their proper treatment. With advancements of technology in precision agriculture, there has been quite a few works done for plant diseases classification although, the performances of the existing approaches are not satisfactory. Moreover, most of the previous works fail to accurately segment leaf part from the whole image especially when an image has complex background. Thus, a computer vision approach is proposed in order to address these challenges. The proposed approach consists of two modules. The first module extracts leaf part from whole image by subtracting complex background. The second module introduces a deep learning convolution neural network (CNN), SoyNet, for soybean plant diseases recognition using segmented leaf images. All the experiments are done on “Image Database of Plant Disease Symptoms” having 16 categories. The proposed model achieves identification accuracy of 98.14% with good precision, recall and f1-score. The proposed method is also compared with three hand-crafted features based state-of-the-art methods and six popularly used deep learning CNN models namely, VGG19, GoogleLeNet, Dense121, XceptionNet, LeNet, and ResNet50. The obtained results depict that the proposed method outperforms nine state-of-the-art methods/models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DimYoung发布了新的文献求助10
刚刚
zhw发布了新的文献求助10
1秒前
没所谓完成签到,获得积分10
1秒前
luoshiyi发布了新的文献求助10
1秒前
1秒前
jasmine完成签到,获得积分10
2秒前
深情安青应助michael采纳,获得10
2秒前
传奇3应助萍苹平采纳,获得10
2秒前
3秒前
所所应助马家辉采纳,获得10
3秒前
汉堡包应助我独自升级采纳,获得10
4秒前
大宝君应助成就寄瑶采纳,获得30
4秒前
4秒前
苏打水完成签到,获得积分10
4秒前
lky关闭了lky文献求助
4秒前
lunlun完成签到,获得积分20
4秒前
跳跃的野狼完成签到,获得积分10
5秒前
believe完成签到,获得积分10
5秒前
5秒前
完美世界应助Gin采纳,获得10
5秒前
桐桐应助QYPANG采纳,获得10
5秒前
今后应助OWEN采纳,获得10
6秒前
芝士完成签到,获得积分20
6秒前
言裕87发布了新的文献求助10
6秒前
传奇3应助乐观如容采纳,获得10
7秒前
小蘑菇应助出其东门采纳,获得10
7秒前
XIGRAY完成签到,获得积分10
7秒前
Mao完成签到,获得积分10
8秒前
TheAnswer完成签到,获得积分20
8秒前
Jared应助清爽的诗云采纳,获得20
8秒前
隐形曼青应助qiaoyun采纳,获得10
9秒前
perry完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
spc68应助徐硕采纳,获得10
10秒前
GeniusJoey完成签到 ,获得积分10
10秒前
邓可新完成签到,获得积分10
10秒前
10秒前
10秒前
BowieHuang应助机智的飞飞采纳,获得10
11秒前
le发布了新的文献求助50
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914