SoyNet: Soybean leaf diseases classification

卷积神经网络 人工智能 深度学习 计算机科学 人口 植物病害 领域(数学) 鉴定(生物学) F1得分 机器学习 模式识别(心理学) 生物 农业工程 数学 生物技术 工程类 植物 人口学 社会学 纯数学
作者
Aditya Karlekar,Ayan Seal
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:172: 105342-105342 被引量:128
标识
DOI:10.1016/j.compag.2020.105342
摘要

According to studies, the human population would cross 9 billion by 2050 and the food demand would increase by 60%. Therefore, increasing and improving the quality of the crop yield is a major field of interest. Recently, infectious biotic and abiotic diseases reduce the potential yield by an average of 40% with many farmers in the developing world experiencing yield losses as high as 100%. Farmers worldwide deal with the issue of plant diseases diagnosis and their proper treatment. With advancements of technology in precision agriculture, there has been quite a few works done for plant diseases classification although, the performances of the existing approaches are not satisfactory. Moreover, most of the previous works fail to accurately segment leaf part from the whole image especially when an image has complex background. Thus, a computer vision approach is proposed in order to address these challenges. The proposed approach consists of two modules. The first module extracts leaf part from whole image by subtracting complex background. The second module introduces a deep learning convolution neural network (CNN), SoyNet, for soybean plant diseases recognition using segmented leaf images. All the experiments are done on “Image Database of Plant Disease Symptoms” having 16 categories. The proposed model achieves identification accuracy of 98.14% with good precision, recall and f1-score. The proposed method is also compared with three hand-crafted features based state-of-the-art methods and six popularly used deep learning CNN models namely, VGG19, GoogleLeNet, Dense121, XceptionNet, LeNet, and ResNet50. The obtained results depict that the proposed method outperforms nine state-of-the-art methods/models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦安完成签到,获得积分10
刚刚
bingbing发布了新的文献求助10
刚刚
王AA完成签到,获得积分10
刚刚
wdy111举报阿斯师大求助涉嫌违规
刚刚
1秒前
1秒前
pqy发布了新的文献求助10
1秒前
无眠宇宙发布了新的文献求助20
1秒前
CodeCraft应助包容的琦采纳,获得10
2秒前
怕孤独的修杰完成签到 ,获得积分10
2秒前
超级无敌奥特大王完成签到,获得积分10
2秒前
2秒前
missylucky完成签到,获得积分10
2秒前
汉堡包应助神勇语堂采纳,获得10
3秒前
3秒前
yookia应助李霞采纳,获得10
4秒前
Zhuhaimao完成签到,获得积分20
4秒前
爆米花应助王AA采纳,获得10
5秒前
新新完成签到 ,获得积分10
5秒前
我爱乒乓球完成签到,获得积分10
5秒前
彭于晏应助ATOM采纳,获得10
5秒前
小新发布了新的文献求助10
5秒前
5秒前
开放怀亦完成签到,获得积分10
6秒前
zzzzz完成签到,获得积分10
6秒前
6秒前
搜集达人应助小琪猪采纳,获得10
6秒前
颖火虫2588完成签到,获得积分10
7秒前
紧张的以山完成签到,获得积分10
7秒前
顺利紫山发布了新的文献求助10
8秒前
xiaose完成签到,获得积分10
8秒前
8秒前
鲸鲸发布了新的文献求助10
8秒前
8秒前
鲁丁丁发布了新的文献求助10
8秒前
烟花应助accpeted采纳,获得10
9秒前
帅气面包完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
傻子与白痴完成签到,获得积分10
9秒前
不厌完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635