Yield estimation in cotton using UAV-based multi-sensor imagery

归一化差异植被指数 多光谱图像 天蓬 遥感 RGB颜色模型 数码相机 产量(工程) 环境科学 叶面积指数 精准农业 数学 计算机科学 人工智能 地理 农学 材料科学 考古 冶金 生物 农业
作者
Aijing Feng,Jianfeng Zhou,Earl D. Vories,Kenneth A. Sudduth,Meina Zhang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:193: 101-114 被引量:194
标识
DOI:10.1016/j.biosystemseng.2020.02.014
摘要

Monitoring crop development and accurately estimating crop yield are important to improve field management and crop production. This study aimed to evaluate the performance of an unmanned aerial vehicle (UAV)-based remote sensing system in cotton yield estimation. A UAV system, equipped with an RGB camera, a multispectral camera, and an infrared thermal camera, was used to acquire images of a cotton field at two growth stages (flowering growth stage and shortly before harvest). Sequential images from the three cameras were processed to generate orthomosaic images and a digital surface model (DSM), which were registered to the georeferenced yield data acquired by a yield monitor mounted on a harvester. Eight image features were extracted, including normalised difference vegetation index (NDVI), green normalised difference vegetation index (GNDVI), triangular greenness index (TGI), a channel in CIE-LAB colour space (a∗), canopy cover, plant height (PH), canopy temperature, and cotton fibre index (CFI). Models were developed to evaluate the accuracy of each image feature for yield estimation. Results show that PH and CFI were the best single features for cotton yield estimation, both with R2 = 0.90. The combination of PH and CFI, PH and a∗, or PH and temperature were the best two-feature models with R2 from 0.92 to 0.94. The best three-feature models were among the combinations of PH, CFI, temperature and a∗. This study found that UAV-based images collected during the flowering growth stage and/or shortly before harvest were able to estimate cotton yield accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
共享精神应助李佳旭采纳,获得30
4秒前
滴迪氐媂完成签到 ,获得积分10
11秒前
研友_08o2yZ完成签到,获得积分10
18秒前
月亮发布了新的文献求助10
20秒前
达雨应助Tal采纳,获得10
23秒前
紧张的眼睛完成签到 ,获得积分10
24秒前
jjjjchou完成签到,获得积分10
26秒前
26秒前
蔺景轩完成签到 ,获得积分10
28秒前
28秒前
CNAxiaozhu7应助quasar采纳,获得10
29秒前
muky完成签到,获得积分10
29秒前
墨染发布了新的文献求助10
30秒前
大方夏瑶完成签到,获得积分10
40秒前
42秒前
科研通AI6应助Xjx6519采纳,获得10
43秒前
嘻哈师徒完成签到,获得积分10
44秒前
达雨应助Tal采纳,获得10
45秒前
46秒前
小左完成签到 ,获得积分10
46秒前
外翎发布了新的文献求助10
47秒前
嘻哈师徒发布了新的文献求助10
47秒前
顾矜应助bai采纳,获得10
48秒前
Barry完成签到,获得积分10
53秒前
54秒前
Jodie发布了新的文献求助10
55秒前
57秒前
依楼发布了新的文献求助10
58秒前
ding应助Jodie采纳,获得10
1分钟前
所所应助冷酷严青采纳,获得10
1分钟前
依楼完成签到,获得积分10
1分钟前
达雨应助Tal采纳,获得10
1分钟前
1分钟前
1分钟前
hcxhch发布了新的文献求助10
1分钟前
xiaofenzi发布了新的文献求助10
1分钟前
1分钟前
浮游应助眼睛大花生采纳,获得10
1分钟前
wanci应助临泉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523