Yield estimation in cotton using UAV-based multi-sensor imagery

归一化差异植被指数 多光谱图像 天蓬 遥感 RGB颜色模型 数码相机 产量(工程) 环境科学 叶面积指数 精准农业 数学 计算机科学 人工智能 地理 农学 材料科学 考古 冶金 生物 农业
作者
Aijing Feng,Jianfeng Zhou,Earl D. Vories,Kenneth A. Sudduth,Meina Zhang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:193: 101-114 被引量:194
标识
DOI:10.1016/j.biosystemseng.2020.02.014
摘要

Monitoring crop development and accurately estimating crop yield are important to improve field management and crop production. This study aimed to evaluate the performance of an unmanned aerial vehicle (UAV)-based remote sensing system in cotton yield estimation. A UAV system, equipped with an RGB camera, a multispectral camera, and an infrared thermal camera, was used to acquire images of a cotton field at two growth stages (flowering growth stage and shortly before harvest). Sequential images from the three cameras were processed to generate orthomosaic images and a digital surface model (DSM), which were registered to the georeferenced yield data acquired by a yield monitor mounted on a harvester. Eight image features were extracted, including normalised difference vegetation index (NDVI), green normalised difference vegetation index (GNDVI), triangular greenness index (TGI), a channel in CIE-LAB colour space (a∗), canopy cover, plant height (PH), canopy temperature, and cotton fibre index (CFI). Models were developed to evaluate the accuracy of each image feature for yield estimation. Results show that PH and CFI were the best single features for cotton yield estimation, both with R2 = 0.90. The combination of PH and CFI, PH and a∗, or PH and temperature were the best two-feature models with R2 from 0.92 to 0.94. The best three-feature models were among the combinations of PH, CFI, temperature and a∗. This study found that UAV-based images collected during the flowering growth stage and/or shortly before harvest were able to estimate cotton yield accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
学术脑袋发布了新的文献求助10
1秒前
lifangqi完成签到,获得积分20
2秒前
3秒前
3秒前
hannah完成签到,获得积分10
4秒前
酸奶烤着吃完成签到,获得积分10
5秒前
Owen应助391X小king采纳,获得10
6秒前
6秒前
小古完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
梦幻发布了新的文献求助10
8秒前
楚博完成签到,获得积分10
8秒前
Am1r完成签到,获得积分10
8秒前
hannah发布了新的文献求助20
9秒前
赵康康发布了新的文献求助10
9秒前
蒸盐粥发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
实验顺利完成签到,获得积分10
16秒前
不期而遇发布了新的文献求助10
16秒前
16秒前
我是老大应助拼搏的无心采纳,获得10
17秒前
18秒前
18秒前
烟花应助hay采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
XUXU发布了新的文献求助10
19秒前
老黄鱼完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
顺心的海菡完成签到,获得积分10
21秒前
亦犹未进发布了新的文献求助10
23秒前
Ljq发布了新的文献求助10
24秒前
ahhh发布了新的文献求助10
24秒前
虚拟的鼠标完成签到,获得积分10
25秒前
梦幻完成签到 ,获得积分10
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365