Yield estimation in cotton using UAV-based multi-sensor imagery

归一化差异植被指数 多光谱图像 天蓬 遥感 RGB颜色模型 数码相机 产量(工程) 环境科学 叶面积指数 精准农业 数学 计算机科学 人工智能 地理 农学 材料科学 考古 冶金 生物 农业
作者
Aijing Feng,Jianfeng Zhou,Earl D. Vories,Kenneth A. Sudduth,Meina Zhang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:193: 101-114 被引量:148
标识
DOI:10.1016/j.biosystemseng.2020.02.014
摘要

Monitoring crop development and accurately estimating crop yield are important to improve field management and crop production. This study aimed to evaluate the performance of an unmanned aerial vehicle (UAV)-based remote sensing system in cotton yield estimation. A UAV system, equipped with an RGB camera, a multispectral camera, and an infrared thermal camera, was used to acquire images of a cotton field at two growth stages (flowering growth stage and shortly before harvest). Sequential images from the three cameras were processed to generate orthomosaic images and a digital surface model (DSM), which were registered to the georeferenced yield data acquired by a yield monitor mounted on a harvester. Eight image features were extracted, including normalised difference vegetation index (NDVI), green normalised difference vegetation index (GNDVI), triangular greenness index (TGI), a channel in CIE-LAB colour space (a∗), canopy cover, plant height (PH), canopy temperature, and cotton fibre index (CFI). Models were developed to evaluate the accuracy of each image feature for yield estimation. Results show that PH and CFI were the best single features for cotton yield estimation, both with R2 = 0.90. The combination of PH and CFI, PH and a∗, or PH and temperature were the best two-feature models with R2 from 0.92 to 0.94. The best three-feature models were among the combinations of PH, CFI, temperature and a∗. This study found that UAV-based images collected during the flowering growth stage and/or shortly before harvest were able to estimate cotton yield accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
sulh发布了新的文献求助10
2秒前
今后应助1111_bb采纳,获得10
3秒前
Akim应助要减肥的从筠采纳,获得10
5秒前
流浪发布了新的文献求助10
5秒前
Mor0se完成签到,获得积分10
6秒前
大模型应助科研小狗采纳,获得10
7秒前
7秒前
YongGanNN发布了新的文献求助10
8秒前
虚幻羊发布了新的文献求助10
8秒前
TAN完成签到 ,获得积分10
9秒前
xinxinwen完成签到,获得积分20
9秒前
9秒前
大模型应助Mayday采纳,获得30
9秒前
柠曦完成签到,获得积分10
10秒前
充电宝应助星星采纳,获得10
10秒前
宇宙尽头的餐馆完成签到,获得积分10
11秒前
11秒前
弄井发布了新的文献求助10
11秒前
赘婿应助嘟嘟采纳,获得10
11秒前
12秒前
12秒前
虚幻羊完成签到,获得积分10
13秒前
13秒前
柠曦发布了新的文献求助10
14秒前
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得30
16秒前
Akim应助科研通管家采纳,获得10
16秒前
无尤发布了新的文献求助10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
兴猡应助科研通管家采纳,获得10
17秒前
YXY应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368