数学
Tikhonov正则化
正规化(语言学)
应用数学
巴克斯-吉尔伯特法
适定问题
反问题
趋同(经济学)
数学分析
支持向量机的正则化研究进展
收敛速度
规范(哲学)
数学优化
先验与后验
作者
Dirk A. Lorenz,Dennis Trede
出处
期刊:Inverse Problems
[IOP Publishing]
日期:2008-10-01
卷期号:24 (5): 055010-
被引量:18
标识
DOI:10.1088/0266-5611/24/5/055010
摘要
In this paper we deal with linear inverse problems and convergence rates for Tikhonov regularization. We consider regularization in a scale of Banach spaces, namely the scale of Besov spaces. We show that regularization in Banach scales differs from regularization in Hilbert scales in the sense that it is possible that stronger source conditions may lead to weaker convergence rates and vice versa. Moreover, we present optimal source conditions for regularization in Besov scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI