已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of Machine Learning for Fatigue Prediction of Flexible Risers - Digital Twin Approach

有限元法 人工神经网络 计算机科学 工程类 领域(数学) 寿命延长 可靠性工程 结构工程 海洋工程 人工智能 数学 医学 老年学 纯数学
作者
Nitin Repalle,Ricky Thethi,P. T. P. Viana,Elizabeth Tellier
标识
DOI:10.2118/202461-ms
摘要

Abstract Flexible pipes have a range of potential failure modes, however fatigue damage of the tensile, and eventually, the pressure armour, is one of the most common problems affecting the longevity of service life and the OPEX due to the common need for flexible riser replacement. With increasing utilisation of flexible pipe for current and future field developments, compounded by the recurrent need for field life extension, it is essential to monitor the riser fatigue regularly to maintain integrity, maximise asset life and to allow for informed appraisal before extending its operational life. This paper presents a novel method of using the refined finite element analysis (FEA) in combination with Artificial Neural Network (ANN) to develop a riser digital twin that can be utilised as an operational decision-making tool for integrity management and life extension. A digital twin model is trained on a subset of available metocean and vessel motion data utilising advanced neural networks which can then be utilised to predict fatigue under the full spectrum of metocean and internal pressure conditions. This approach allows for a significant reduction in the estimation time of the fatigue damage compared to conventional FEA as well as improved accuracy of prediction. The methodology presented in the paper has been primarily developed with the view of deepwater riser applications but is easily adaptable to shallow water application in combination with various floating vessels. A case study is presented to demonstrate how this technology is being deployed offshore. A comparison of FEA and digital twin approach is also presented to highlight the speed and efficiency of digital twin model whereby real-time insights on fatigue life can be evaluated for informed operational decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心靳完成签到 ,获得积分10
刚刚
777完成签到 ,获得积分20
1秒前
木子木木夕完成签到 ,获得积分10
1秒前
orixero应助NSstupid采纳,获得10
3秒前
调研昵称发布了新的文献求助10
4秒前
Luuu发布了新的文献求助10
5秒前
天水张家辉完成签到,获得积分10
6秒前
renhuiling完成签到 ,获得积分10
7秒前
taotao完成签到,获得积分10
10秒前
刻苦的尔白完成签到,获得积分10
14秒前
月光完成签到 ,获得积分10
21秒前
yyd完成签到,获得积分10
22秒前
一颗煤炭完成签到 ,获得积分10
23秒前
26秒前
仁爱钢笔完成签到 ,获得积分10
28秒前
杳鸢应助大狗砸采纳,获得30
32秒前
三文鱼发布了新的文献求助10
32秒前
33秒前
xiqianyangyi完成签到 ,获得积分10
33秒前
嘉心糖完成签到,获得积分0
34秒前
36秒前
时间煮雨我煮鱼完成签到,获得积分10
37秒前
共享精神应助丫丫采纳,获得10
38秒前
锋芒不毕露完成签到,获得积分10
40秒前
李爱国应助科研通管家采纳,获得10
40秒前
李健应助科研通管家采纳,获得10
40秒前
李爱国应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
宋忘幽应助科研通管家采纳,获得10
41秒前
小米完成签到,获得积分20
43秒前
三文鱼完成签到,获得积分10
45秒前
gaint发布了新的文献求助10
48秒前
yingqing完成签到 ,获得积分10
48秒前
49秒前
孔大漂亮完成签到,获得积分10
49秒前
丫丫完成签到,获得积分20
50秒前
高贵的青槐完成签到 ,获得积分10
52秒前
丫丫发布了新的文献求助10
54秒前
57秒前
cc发布了新的文献求助10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658987
捐赠科研通 2653860
什么是DOI,文献DOI怎么找? 1453328
科研通“疑难数据库(出版商)”最低求助积分说明 672858
邀请新用户注册赠送积分活动 662808