已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Corrosion Mapping AI & Machine Learning

计算机科学 管道 分析 数据收集 人工智能 仪表板 点云 资产(计算机安全) 实时计算 数据挖掘 数据库 工程类 计算机安全 数学 环境工程 统计
作者
Marc Majors,Travis Harrington,Eric L. Ferguson,Toby Dunne,Steve Potiris,V. Vlaskine,Jaffar Mohammed,Suchet Bargoti,Masood Naqshbandi,Nasir Ahsan
标识
DOI:10.2118/202801-ms
摘要

Abstract Objective Risk reduction and increased Fabric Maintenance efficiency using Artificial Intelligence and Machine Learning algorithms to analyze full-facility imagery for atmospheric corrosion detection and classification. Following imagery capture and processing, deficiencies are identified, and targeted mitigation strategies are executed at greatly reduced cycle time and cost. Methods, Procedures, Process A pre-mobilization facility scan plan is generated to maximize imagery quality, including high elevation scan positions, to ensure thorough and comprehensive analytics. Data from all scan positions are stitched together in a point cloud and aligned for accuracy relative to each location. Finalized imagery and point clouds are then tagged with unique piping line numbers per design, fixed equipment tags, or unique asset identification. The Machine Learning algorithm is intensely trained with manual ground truth inputs prior to analysis. The algorithm analyzes each pixel throughout the facility and detects, classifies, and reports on all identified corrosion, tagging faults to specific piping or equipment. Results, Observations, Conclusions Atmospheric corrosion is the number one Asset Integrity threat in the Gulf of Mexico. Utilizing this tool, we can have a comprehensive and objective analysis of a facility’s health in a matter of weeks from the time of data collection. Data collection for a large deep-water, spar facility requires approximately 12 days with 8 data scanning personnel. Conventional manual inspections incur higher risk, higher cost, and reporting is much less objective considering the number of inspectors involved and the duration of a full-facility campaign. Finally, all results are published in a user-friendly dashboard that can be filtered by process type, equipment type, corrosion severity, and many other criteria as the user requires. Each fault is associated with the specific equipment identification and the user can navigate to see the imagery of the corrosion in a 3D, photogrammetric environment. Remediation strategies can be collated into work packs for fabric maintenance teams, further Nondestructive Examination (NDE) assessment, or work orders for replacement. Fabric maintenance efficiencies are substantially realized by targeting decks, blocks, or areas with the highest aggregate surface areas of corrosion (on process equipment or structurally, as selected by the user) and concentrating remediation efforts on at-risk equipment. Novel/Additive Information This application of Artifical Intelligence and Machine Learning is a first-in-industry approach to having a comprehensive understanding of facility coating integrity and external corrosion threats. HSE analysis, Risk awareness, and targeted remediation strategies will make the Asset Integrity program more efficient, proactive, and reduce down-time across the Gulf of Mexico related to atmospheric corrosion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
iNk应助xingmeng采纳,获得10
2秒前
5秒前
6秒前
Siriya发布了新的文献求助30
7秒前
星hai完成签到,获得积分20
7秒前
10秒前
斯文败类应助拉长的博超采纳,获得10
10秒前
星hai发布了新的文献求助10
11秒前
iNk应助Blessing采纳,获得20
13秒前
慕青应助周周采纳,获得10
14秒前
英俊的铭应助周周采纳,获得10
14秒前
小蘑菇应助周周采纳,获得10
14秒前
江湖白晓灵应助周周采纳,获得10
14秒前
沉静凡松发布了新的文献求助10
14秒前
黎明发布了新的文献求助10
18秒前
19秒前
20秒前
K先生完成签到,获得积分10
20秒前
俏皮咖啡发布了新的文献求助10
22秒前
研友_VZG7GZ应助星hai采纳,获得50
24秒前
Dylan完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
礼礼应助科研通管家采纳,获得10
26秒前
26秒前
SciGPT应助苏苏采纳,获得10
27秒前
27秒前
whohol发布了新的文献求助10
31秒前
无花果应助小巧念露采纳,获得10
32秒前
Hello应助细心蚂蚁采纳,获得10
33秒前
33秒前
34秒前
YeeStonee发布了新的文献求助10
34秒前
34秒前
黎明完成签到,获得积分10
35秒前
千里完成签到,获得积分10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624