Radiomic Detection of EGFR Mutations in NSCLC

无线电技术 癌症影像学 表皮生长因子受体 医学 接收机工作特性 人工智能 T790米 机器学习 肿瘤科 内科学 计算机科学 吉非替尼 肺癌 癌症
作者
Giovanni Rossi,Emanuele Barabino,Alessandro Fedeli,Gianluca Ficarra,Simona Coco,Alessandro Russo,Vincenzo Adamo,Francesco Buemi,Lodovica Zullo,Mariella Dono,Giuseppa De Luca,Luca Longo,Maria Giovanna Dal Bello,Marco Tagliamento,Angela Alama,Giuseppe Cittadini,Paolo Pronzato,Carlo Genova
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:81 (3): 724-731 被引量:56
标识
DOI:10.1158/0008-5472.can-20-0999
摘要

Abstract Radiomics is defined as the use of automated or semi-automated post-processing and analysis of multiple features derived from imaging exams. Extracted features might generate models able to predict the molecular profile of solid tumors. The aim of this study was to develop a predictive algorithm to define the mutational status of EGFR in treatment-naïve patients with advanced non–small cell lung cancer (NSCLC). CT scans from 109 treatment-naïve patients with NSCLC (21 EGFR-mutant and 88 EGFR-wild type) underwent radiomics analysis to develop a machine learning model able to recognize EGFR-mutant from EGFR-WT patients via CT scans. A “test–retest” approach was used to identify stable radiomics features. The accuracy of the model was tested on an external validation set from another institution and on a dataset from the Cancer Imaging Archive (TCIA). The machine learning model that considered both radiomic and clinical features (gender and smoking status) reached a diagnostic accuracy of 88.1% in our dataset with an AUC at the ROC curve of 0.85, whereas the accuracy values in the datasets from TCIA and the external institution were 76.6% and 83.3%, respectively. Furthermore, 17 distinct radiomics features detected at baseline CT scan were associated with subsequent development of T790M during treatment with an EGFR inhibitor. In conclusion, our machine learning model was able to identify EGFR-mutant patients in multiple validation sets with globally good accuracy, especially after data optimization. More comprehensive training sets might result in further improvement of radiomics-based algorithms. Significance: These findings demonstrate that data normalization and “test–retest” methods might improve the performance of machine learning models on radiomics images and increase their reliability when used on external validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听导师发布了新的文献求助10
刚刚
刚刚
季忆完成签到,获得积分10
刚刚
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808