Radiomic Detection of EGFR Mutations in NSCLC

医学 肿瘤科 内科学 计算生物学 生物
作者
Giovanni Rossi,Emanuele Barabino,Alessandro Fedeli,Gianluca Ficarra,Simona Coco,Alessandro Russo,Vincenzo Adamo,Francesco Buemi,Lodovica Zullo,Mariella Dono,Giuseppa De Luca,Luca Longo,Maria Giovanna Dal Bello,Marco Tagliamento,Angela Alama,Giuseppe Cittadini,P. Pronzato,Carlo Genova
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:81 (3): 724-731 被引量:83
标识
DOI:10.1158/0008-5472.can-20-0999
摘要

Radiomics is defined as the use of automated or semi-automated post-processing and analysis of multiple features derived from imaging exams. Extracted features might generate models able to predict the molecular profile of solid tumors. The aim of this study was to develop a predictive algorithm to define the mutational status of EGFR in treatment-naïve patients with advanced non-small cell lung cancer (NSCLC). CT scans from 109 treatment-naïve patients with NSCLC (21 EGFR-mutant and 88 EGFR-wild type) underwent radiomics analysis to develop a machine learning model able to recognize EGFR-mutant from EGFR-WT patients via CT scans. A "test-retest" approach was used to identify stable radiomics features. The accuracy of the model was tested on an external validation set from another institution and on a dataset from the Cancer Imaging Archive (TCIA). The machine learning model that considered both radiomic and clinical features (gender and smoking status) reached a diagnostic accuracy of 88.1% in our dataset with an AUC at the ROC curve of 0.85, whereas the accuracy values in the datasets from TCIA and the external institution were 76.6% and 83.3%, respectively. Furthermore, 17 distinct radiomics features detected at baseline CT scan were associated with subsequent development of T790M during treatment with an EGFR inhibitor. In conclusion, our machine learning model was able to identify EGFR-mutant patients in multiple validation sets with globally good accuracy, especially after data optimization. More comprehensive training sets might result in further improvement of radiomics-based algorithms. SIGNIFICANCE: These findings demonstrate that data normalization and "test-retest" methods might improve the performance of machine learning models on radiomics images and increase their reliability when used on external validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贵贵完成签到,获得积分10
1秒前
Lz完成签到,获得积分10
2秒前
玩命的寄翠完成签到 ,获得积分10
3秒前
潘道士完成签到 ,获得积分10
4秒前
曾建完成签到 ,获得积分10
4秒前
Sonder完成签到 ,获得积分10
5秒前
夏明明完成签到,获得积分10
5秒前
eve完成签到,获得积分10
5秒前
5秒前
白蝶完成签到 ,获得积分10
6秒前
大仙完成签到,获得积分10
6秒前
随遇而安完成签到 ,获得积分10
6秒前
风趣霆完成签到,获得积分10
6秒前
6秒前
跋扈完成签到,获得积分10
7秒前
田二亩完成签到,获得积分10
7秒前
Bioflying完成签到,获得积分10
8秒前
风希完成签到,获得积分10
9秒前
拼搏的问玉完成签到,获得积分10
9秒前
沉默士萧完成签到,获得积分10
10秒前
犹豫战斗机完成签到,获得积分10
10秒前
Ther完成签到,获得积分10
10秒前
ntxlks完成签到,获得积分10
10秒前
丫丫完成签到,获得积分10
11秒前
12秒前
...完成签到 ,获得积分0
15秒前
孤独丹秋完成签到,获得积分10
15秒前
笨笨小刺猬完成签到,获得积分10
15秒前
gglp完成签到 ,获得积分10
15秒前
tetrakis完成签到,获得积分10
16秒前
hlq发布了新的文献求助10
17秒前
18秒前
凌兰完成签到 ,获得积分10
18秒前
Sunshine完成签到,获得积分10
18秒前
初亦非完成签到,获得积分10
19秒前
xiaxia42完成签到 ,获得积分10
22秒前
22秒前
柠七完成签到,获得积分10
22秒前
man完成签到 ,获得积分10
23秒前
小陈发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259