Radiomic Detection of EGFR Mutations in NSCLC

医学 肿瘤科 内科学 计算生物学 生物
作者
Giovanni Rossi,Emanuele Barabino,Alessandro Fedeli,Gianluca Ficarra,Simona Coco,Alessandro Russo,Vincenzo Adamo,Francesco Buemi,Lodovica Zullo,Mariella Dono,Giuseppa De Luca,Luca Longo,Maria Giovanna Dal Bello,Marco Tagliamento,Angela Alama,Giuseppe Cittadini,P. Pronzato,Carlo Genova
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:81 (3): 724-731 被引量:100
标识
DOI:10.1158/0008-5472.can-20-0999
摘要

Abstract Radiomics is defined as the use of automated or semi-automated post-processing and analysis of multiple features derived from imaging exams. Extracted features might generate models able to predict the molecular profile of solid tumors. The aim of this study was to develop a predictive algorithm to define the mutational status of EGFR in treatment-naïve patients with advanced non–small cell lung cancer (NSCLC). CT scans from 109 treatment-naïve patients with NSCLC (21 EGFR-mutant and 88 EGFR-wild type) underwent radiomics analysis to develop a machine learning model able to recognize EGFR-mutant from EGFR-WT patients via CT scans. A “test–retest” approach was used to identify stable radiomics features. The accuracy of the model was tested on an external validation set from another institution and on a dataset from the Cancer Imaging Archive (TCIA). The machine learning model that considered both radiomic and clinical features (gender and smoking status) reached a diagnostic accuracy of 88.1% in our dataset with an AUC at the ROC curve of 0.85, whereas the accuracy values in the datasets from TCIA and the external institution were 76.6% and 83.3%, respectively. Furthermore, 17 distinct radiomics features detected at baseline CT scan were associated with subsequent development of T790M during treatment with an EGFR inhibitor. In conclusion, our machine learning model was able to identify EGFR-mutant patients in multiple validation sets with globally good accuracy, especially after data optimization. More comprehensive training sets might result in further improvement of radiomics-based algorithms. Significance: These findings demonstrate that data normalization and “test–retest” methods might improve the performance of machine learning models on radiomics images and increase their reliability when used on external validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
失眠翠芙完成签到 ,获得积分10
1秒前
云川完成签到,获得积分10
1秒前
1秒前
2秒前
9377应助美丽思山采纳,获得10
2秒前
Lucas应助TNU采纳,获得10
3秒前
明理丹云完成签到,获得积分20
3秒前
00发布了新的文献求助10
4秒前
yanziwu94完成签到,获得积分10
4秒前
舒适的尔容完成签到,获得积分10
5秒前
5秒前
现实的无敌完成签到,获得积分20
5秒前
奻黥完成签到,获得积分10
5秒前
tangtang完成签到 ,获得积分10
6秒前
云川发布了新的文献求助10
6秒前
科目三应助poco采纳,获得10
7秒前
7秒前
7秒前
RRR发布了新的文献求助10
7秒前
8秒前
活泼水桃完成签到,获得积分10
8秒前
明理丹云发布了新的文献求助30
8秒前
沉住气完成签到 ,获得积分10
9秒前
东郭老九发布了新的文献求助10
9秒前
10秒前
10秒前
Orange应助lllxxx采纳,获得10
11秒前
纪季伯完成签到,获得积分20
11秒前
123321完成签到,获得积分10
11秒前
风吹麦田给liwei的求助进行了留言
11秒前
CipherSage应助刘智舰采纳,获得10
11秒前
研友_VZG7GZ应助认真的彩虹采纳,获得10
11秒前
shihuishui完成签到,获得积分10
12秒前
小萝卜完成签到,获得积分10
12秒前
影子发布了新的文献求助10
12秒前
zxb发布了新的文献求助10
12秒前
Hellowa完成签到,获得积分10
12秒前
顾矜应助忆仙姿采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525537
求助须知:如何正确求助?哪些是违规求助? 4615754
关于积分的说明 14550242
捐赠科研通 4553783
什么是DOI,文献DOI怎么找? 2495507
邀请新用户注册赠送积分活动 1476091
关于科研通互助平台的介绍 1447818