Electronic relaxation of aqueous aminoazobenzenes studied by time-resolved photoelectron spectroscopy and surface hopping TDDFT dynamics calculations

含时密度泛函理论 X射线光电子能谱 发色团 水溶液 放松(心理学) 光谱学 化学 表面跳跃 甲基橙 化学物理 物理化学 计算化学 光化学 分析化学(期刊) 材料科学 分子动力学 密度泛函理论 核磁共振 有机化学 物理 催化作用 光催化 量子力学 社会心理学 心理学
作者
Evgenii Titov,Johan Hummert,Evgenii Ikonnikov,Roland Mitrić,Oleg Kornilov
出处
期刊:Faraday Discussions [The Royal Society of Chemistry]
卷期号:228: 226-241 被引量:10
标识
DOI:10.1039/d0fd00111b
摘要

Studies of ultrafast relaxation of molecular chromophores are complicated by the fact that most chromophores of biological and technological importance are rather large molecules and are strongly affected by their environment, either solvent or a protein cage. Here we present an approach which allows us to follow transient electronic structure of complex photoexcited molecules. We use the method of time-resolved photoelectron spectroscopy in solution to follow relaxation of two prototypical aqueous chromophores, Methyl Orange and Metanil Yellow, both of which are aminoazobenzene derivatives. Using excitation by 400 nm laser pulses and ionization by wavelength-selected 46.7 nm XUV pulses from high-order harmonic generation we follow relaxation of both molecules via the dark S1 state. The photoelectron spectra yield binding energies of both ground and excited states. We combine the experimental results with surface hopping time-dependent density functional theory (TDDFT) calculations employing B3LYP+D3 and ωB97X-D functionals. The results demonstrate that the method is generally suitable for description of ultrafast dynamics in these molecules and can recover absolute binding energies observed in the experiment. The B3LYP+D3 functional appears to be better suited for these systems, especially in the case of Metanil Yellow, where it indicates the importance of an intramolecular charge transfer state. Our results pave the way towards quantitative understanding of evolving electronic structure in photo-induced relaxation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助jjy采纳,获得10
1秒前
1秒前
郑总完成签到,获得积分10
1秒前
CipherSage应助马尼拉采纳,获得10
1秒前
SCI完成签到 ,获得积分10
2秒前
3秒前
healer发布了新的文献求助10
3秒前
123完成签到,获得积分20
4秒前
李健的小迷弟应助yili采纳,获得10
4秒前
L.完成签到,获得积分10
4秒前
木子发布了新的文献求助10
4秒前
威武诺言发布了新的文献求助10
4秒前
科研通AI5应助孙二二采纳,获得10
4秒前
4秒前
英姑应助rookie_b0采纳,获得10
5秒前
毛慢慢发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
kangkang完成签到,获得积分10
6秒前
丘比特应助东风第一枝采纳,获得10
6秒前
6秒前
丰知然应助normankasimodo采纳,获得10
7秒前
黑森林发布了新的文献求助30
7秒前
hu970发布了新的文献求助10
7秒前
7秒前
俭朴夜雪发布了新的文献求助30
7秒前
林上草应助lzj001983采纳,获得10
7秒前
小白完成签到,获得积分20
7秒前
药疯了完成签到,获得积分20
8秒前
桐桐应助123采纳,获得10
8秒前
风中寄云发布了新的文献求助10
8秒前
buuyoo发布了新的文献求助10
8秒前
zjudxn发布了新的文献求助10
8秒前
春夏爱科研完成签到,获得积分10
9秒前
飞翔的西红柿完成签到,获得积分10
9秒前
xzy完成签到,获得积分10
9秒前
L.发布了新的文献求助20
10秒前
Verdigris完成签到,获得积分10
11秒前
cindy完成签到,获得积分10
11秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
11秒前
金色热浪完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759