IoT Malware Network Traffic Classification using Visual Representation and Deep Learning

计算机科学 恶意软件 深度学习 人工智能 代表(政治) 交通分类 机器学习 计算机安全 万维网 互联网 政治学 政治 法学
作者
Gueltoum Bendiab,Stavros Shiaeles,Abdulrahman Alruban,Nicholas Kolokotronis
标识
DOI:10.1109/netsoft48620.2020.9165381
摘要

With the increase of IoT devices and technologies coming into service, Malware has risen as a challenging threat with increased infection rates and levels of sophistication. Without strong security mechanisms, a huge amount of sensitive data is exposed to vulnerabilities, and therefore, easily abused by cybercriminals to perform several illegal activities. Thus, advanced network security mechanisms that are able of performing a real-time traffic analysis and mitigation of malicious traffic are required. To address this challenge, we are proposing a novel IoT malware traffic analysis approach using deep learning and visual representation for faster detection and classification of new malware (zero-day malware). The detection of malicious network traffic in the proposed approach works at the package level, significantly reducing the time of detection with promising results due to the deep learning technologies used. To evaluate our proposed method performance, a dataset is constructed which consists of 1000 pcap files of normal and malware traffic that are collected from different network traffic sources. The experimental results of Residual Neural Network (ResNet50) are very promising, providing a 94.50% accuracy rate for detection of malware traffic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
百里青青完成签到,获得积分10
1秒前
1秒前
1秒前
巴山郎发布了新的文献求助10
1秒前
1秒前
喜悦酸奶发布了新的文献求助10
3秒前
4秒前
zzzzzdz完成签到,获得积分10
4秒前
俏皮妙海发布了新的文献求助10
4秒前
arya应助浅夏采纳,获得10
5秒前
5秒前
XSY完成签到 ,获得积分20
5秒前
7秒前
儒雅卿发布了新的文献求助10
7秒前
Cong完成签到,获得积分10
7秒前
huangdy完成签到,获得积分10
8秒前
巴山郎完成签到,获得积分10
8秒前
8秒前
大个应助unflycn采纳,获得10
9秒前
liffchao应助小黑超努力采纳,获得10
9秒前
9秒前
dddy发布了新的文献求助10
10秒前
echoMe发布了新的文献求助10
10秒前
11秒前
Jerryluo发布了新的文献求助30
11秒前
luyuhao3应助wyx采纳,获得10
11秒前
aoao嘉完成签到,获得积分10
11秒前
深情安青应助77采纳,获得10
11秒前
Billy应助Cong采纳,获得30
12秒前
共享精神应助健壮雨兰采纳,获得10
12秒前
解泽星完成签到,获得积分10
13秒前
RUINNNO完成签到 ,获得积分10
13秒前
COCO发布了新的文献求助10
14秒前
16秒前
liffchao应助chen采纳,获得10
16秒前
iVANPENNY应助奶昔采纳,获得10
17秒前
17秒前
xubee完成签到,获得积分10
18秒前
简单果汁完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255