Improved deep learning framework for fish segmentation in underwater videos

水下 计算机科学 人工智能 分割 深度学习 目标检测 机器学习 计算机视觉 渔业 地质学 海洋学 生物
作者
Nawaf Farhan Funkur Alshdaifat,Abdullah Zawawi Talib,Mohd Azam Osman
出处
期刊:Ecological Informatics [Elsevier]
卷期号:59: 101121-101121 被引量:66
标识
DOI:10.1016/j.ecoinf.2020.101121
摘要

Deep learning networks have become increasingly popular in recent years due to promising breakthroughs achieved in several areas. The importance of deep learning lies in the localisation and classification of an object based on frames. This study focuses on fish recognition methods in underwater videos and addresses the underlying challenges of these methods. It is important to develop effective methods to recognise fish and their movements using underwater videos. From a practical and scientific perspective, this is extremely useful to automatically recognise fish through their movement and to monitor and collect biomass in marine bodies. More importantly, it allows researchers to collect and analyse information related to the health and well-being of the Marine ecosystem. As most of the current methods work on static images, the issue arises when these methods are applied to images from videos. The existing multiple fish detection methods for underwater videos have a low detection rate due to the inherent underwater conditions such as the presence of coral reefs and other challenges which include the different sizes, shapes, colour, and speed of fish as well as marine behaviours such as the overlapping of fish. Therefore, the use of improved methods based on the latest deep learning algorithms has been proposed for multiple fish detection. This paper provides a novel framework for fish instance segmentation in underwater videos. The proposed model for improved recognition methods is composed of four main stages: 1) pre-processing method to reduce external factors in the videos for better detection and recognition of fish in underwater videos, 2) use of deep learning approach for enhanced detection of fish using RESENT, 3) enhanced detection of multiple fish based on the Region Proposal Network (RPN) architecture, and 4) use of a dynamic instance segmentation method. The results of this study indicate that the proposed framework has a better performance capability than other state-of-the-art models for multi-fish instance segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗小纽扣完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
NexusExplorer应助飞飞飞采纳,获得10
1秒前
情怀应助222采纳,获得10
1秒前
安白发布了新的文献求助10
2秒前
悦悦完成签到 ,获得积分10
2秒前
1751587229完成签到,获得积分10
2秒前
傢誠发布了新的文献求助10
2秒前
fanmo完成签到 ,获得积分0
3秒前
3秒前
文文发布了新的文献求助10
3秒前
violet_119完成签到,获得积分10
3秒前
3秒前
benbenca发布了新的文献求助20
3秒前
3秒前
爆米花应助hl采纳,获得10
4秒前
5秒前
三太子发布了新的文献求助10
6秒前
6秒前
7秒前
李健应助ccerr采纳,获得10
7秒前
不再选择发布了新的文献求助10
10秒前
silvia-z发布了新的文献求助10
11秒前
cctv18应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
cctv18应助科研通管家采纳,获得10
12秒前
cctv18应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
13秒前
cctv18应助科研通管家采纳,获得10
13秒前
东方欲晓应助科研通管家采纳,获得20
13秒前
13秒前
w_sea应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
SuperBean应助科研通管家采纳,获得10
13秒前
13秒前
东方欲晓应助科研通管家采纳,获得50
13秒前
14秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330005
求助须知:如何正确求助?哪些是违规求助? 2959617
关于积分的说明 8596037
捐赠科研通 2637980
什么是DOI,文献DOI怎么找? 1444063
科研通“疑难数据库(出版商)”最低求助积分说明 668931
邀请新用户注册赠送积分活动 656507