Improved deep learning framework for fish segmentation in underwater videos

水下 计算机科学 人工智能 分割 深度学习 目标检测 机器学习 计算机视觉 渔业 地质学 海洋学 生物
作者
Nawaf Farhan Funkur Alshdaifat,Abdullah Zawawi Talib,Mohd Azam Osman
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:59: 101121-101121 被引量:66
标识
DOI:10.1016/j.ecoinf.2020.101121
摘要

Deep learning networks have become increasingly popular in recent years due to promising breakthroughs achieved in several areas. The importance of deep learning lies in the localisation and classification of an object based on frames. This study focuses on fish recognition methods in underwater videos and addresses the underlying challenges of these methods. It is important to develop effective methods to recognise fish and their movements using underwater videos. From a practical and scientific perspective, this is extremely useful to automatically recognise fish through their movement and to monitor and collect biomass in marine bodies. More importantly, it allows researchers to collect and analyse information related to the health and well-being of the Marine ecosystem. As most of the current methods work on static images, the issue arises when these methods are applied to images from videos. The existing multiple fish detection methods for underwater videos have a low detection rate due to the inherent underwater conditions such as the presence of coral reefs and other challenges which include the different sizes, shapes, colour, and speed of fish as well as marine behaviours such as the overlapping of fish. Therefore, the use of improved methods based on the latest deep learning algorithms has been proposed for multiple fish detection. This paper provides a novel framework for fish instance segmentation in underwater videos. The proposed model for improved recognition methods is composed of four main stages: 1) pre-processing method to reduce external factors in the videos for better detection and recognition of fish in underwater videos, 2) use of deep learning approach for enhanced detection of fish using RESENT, 3) enhanced detection of multiple fish based on the Region Proposal Network (RPN) architecture, and 4) use of a dynamic instance segmentation method. The results of this study indicate that the proposed framework has a better performance capability than other state-of-the-art models for multi-fish instance segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lailight完成签到,获得积分10
1秒前
yc发布了新的文献求助10
2秒前
3秒前
wanci应助伶俐的以筠采纳,获得10
3秒前
hhhh发布了新的文献求助10
4秒前
4秒前
5秒前
后青春期的痘完成签到,获得积分10
5秒前
板栗发布了新的文献求助10
6秒前
瞌睡社畜发布了新的文献求助10
6秒前
郭晓波发布了新的文献求助30
6秒前
yiming完成签到,获得积分10
7秒前
路人甲完成签到,获得积分10
7秒前
8秒前
Owen应助海盗船长采纳,获得10
9秒前
小梦完成签到,获得积分10
9秒前
科研通AI5应助吃饱但很饿采纳,获得10
9秒前
9秒前
JHL发布了新的文献求助10
10秒前
谈笑间应助Lijunjie采纳,获得10
11秒前
路人甲发布了新的文献求助10
11秒前
君翊完成签到,获得积分20
11秒前
11秒前
東風完成签到,获得积分10
14秒前
科研通AI5应助awslsdl采纳,获得10
14秒前
14秒前
14秒前
冰橙咖啡完成签到,获得积分10
15秒前
山东人在南京完成签到 ,获得积分10
17秒前
自由的沛山完成签到,获得积分10
18秒前
一颗煤炭完成签到 ,获得积分10
18秒前
NexusExplorer应助韵寒禾香采纳,获得10
19秒前
古少完成签到,获得积分10
19秒前
JHL完成签到,获得积分10
20秒前
20秒前
Murphy_H完成签到,获得积分10
20秒前
情怀应助Litianxue采纳,获得10
22秒前
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462