已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved deep learning framework for fish segmentation in underwater videos

水下 计算机科学 人工智能 分割 深度学习 目标检测 机器学习 计算机视觉 渔业 地质学 海洋学 生物
作者
Nawaf Farhan Funkur Alshdaifat,Abdullah Zawawi Talib,Mohd Azam Osman
出处
期刊:Ecological Informatics [Elsevier]
卷期号:59: 101121-101121 被引量:66
标识
DOI:10.1016/j.ecoinf.2020.101121
摘要

Deep learning networks have become increasingly popular in recent years due to promising breakthroughs achieved in several areas. The importance of deep learning lies in the localisation and classification of an object based on frames. This study focuses on fish recognition methods in underwater videos and addresses the underlying challenges of these methods. It is important to develop effective methods to recognise fish and their movements using underwater videos. From a practical and scientific perspective, this is extremely useful to automatically recognise fish through their movement and to monitor and collect biomass in marine bodies. More importantly, it allows researchers to collect and analyse information related to the health and well-being of the Marine ecosystem. As most of the current methods work on static images, the issue arises when these methods are applied to images from videos. The existing multiple fish detection methods for underwater videos have a low detection rate due to the inherent underwater conditions such as the presence of coral reefs and other challenges which include the different sizes, shapes, colour, and speed of fish as well as marine behaviours such as the overlapping of fish. Therefore, the use of improved methods based on the latest deep learning algorithms has been proposed for multiple fish detection. This paper provides a novel framework for fish instance segmentation in underwater videos. The proposed model for improved recognition methods is composed of four main stages: 1) pre-processing method to reduce external factors in the videos for better detection and recognition of fish in underwater videos, 2) use of deep learning approach for enhanced detection of fish using RESENT, 3) enhanced detection of multiple fish based on the Region Proposal Network (RPN) architecture, and 4) use of a dynamic instance segmentation method. The results of this study indicate that the proposed framework has a better performance capability than other state-of-the-art models for multi-fish instance segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RCRCRC1995发布了新的文献求助10
1秒前
3秒前
4秒前
6秒前
FMK发布了新的文献求助10
9秒前
风清扬应助橙子采纳,获得30
10秒前
李爱国应助谢绍博采纳,获得10
12秒前
CC完成签到 ,获得积分10
13秒前
aaa5a123完成签到 ,获得积分10
14秒前
EVER完成签到 ,获得积分10
15秒前
李爱国应助淡淡芯采纳,获得10
15秒前
淡然葶完成签到 ,获得积分10
15秒前
qiuqiu应助研友_ZGRvon采纳,获得10
15秒前
小恐龙飞飞完成签到 ,获得积分10
17秒前
钢牙刷完成签到,获得积分10
22秒前
25秒前
26秒前
Kirara发布了新的文献求助10
28秒前
FashionBoy应助君莫笑采纳,获得10
29秒前
兔子完成签到,获得积分10
35秒前
35秒前
Fn完成签到 ,获得积分10
35秒前
光之霓裳完成签到 ,获得积分10
37秒前
头号可爱完成签到 ,获得积分10
40秒前
41秒前
44秒前
张小馨完成签到 ,获得积分10
45秒前
45秒前
cc发布了新的文献求助10
49秒前
yyyyxxxg完成签到,获得积分10
53秒前
55秒前
Kirara发布了新的文献求助10
59秒前
kouxinyao发布了新的文献求助10
1分钟前
FEMTO完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助cc采纳,获得10
1分钟前
tjnksy完成签到,获得积分10
1分钟前
星工捷卫发布了新的文献求助10
1分钟前
1分钟前
Erste完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488316
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413282
捐赠科研通 4518501
什么是DOI,文献DOI怎么找? 2475886
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434304