纹理合成
计算机科学
一般化
人工智能
外推法
鉴别器
深度学习
生成语法
集合(抽象数据类型)
人工神经网络
纹理(宇宙学)
网络体系结构
视图合成
功能(生物学)
图像(数学)
机器学习
图像纹理
图像处理
数学
生物
探测器
进化生物学
电信
数学分析
计算机安全
程序设计语言
渲染(计算机图形)
作者
Tiziano Portenier,Siavash Arjomand Bigdeli,Orçun Göksel
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:13
标识
DOI:10.48550/arxiv.2006.16112
摘要
We present a novel texture synthesis framework, enabling the generation of infinite, high-quality 3D textures given a 2D exemplar image. Inspired by recent advances in natural texture synthesis, we train deep neural models to generate textures by non-linearly combining learned noise frequencies. To achieve a highly realistic output conditioned on an exemplar patch, we propose a novel loss function that combines ideas from both style transfer and generative adversarial networks. In particular, we train the synthesis network to match the Gram matrices of deep features from a discriminator network. In addition, we propose two architectural concepts and an extrapolation strategy that significantly improve generalization performance. In particular, we inject both model input and condition into hidden network layers by learning to scale and bias hidden activations. Quantitative and qualitative evaluations on a diverse set of exemplars motivate our design decisions and show that our system performs superior to previous state of the art. Finally, we conduct a user study that confirms the benefits of our framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI