2D and 3D texture analysis to predict lymphovascular invasion in lung adenocarcinoma

医学 列线图 签名(拓扑) 淋巴血管侵犯 核医学 腺癌 内科学 放射科 接收机工作特性 肿瘤科 转移 人工智能 计算机科学 数学 癌症 几何学
作者
Guangli Yang,Pei Nie,Lianzi Zhao,Jian Guo,Wei Xue,Lei Yan,Jingjing Cui,Zhenguang Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:129: 109111-109111 被引量:29
标识
DOI:10.1016/j.ejrad.2020.109111
摘要

Purpose Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. Methods A total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. Results Maximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). Conclusions 2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助郑郑采纳,获得10
1秒前
2秒前
干饭虫应助T102892采纳,获得10
2秒前
量子星尘发布了新的文献求助30
3秒前
Orange应助麻瓜采纳,获得10
3秒前
Joyce发布了新的文献求助10
4秒前
guoguo1119发布了新的文献求助10
4秒前
喵呜完成签到,获得积分10
5秒前
北北完成签到,获得积分10
5秒前
gk完成签到,获得积分20
6秒前
6秒前
7秒前
核桃应助slowfloat采纳,获得20
7秒前
JamesPei应助B站萧亚轩采纳,获得10
8秒前
搞怪雁风完成签到,获得积分10
8秒前
刘茗元发布了新的文献求助20
8秒前
8秒前
8秒前
8秒前
9秒前
上官若男应助wzc采纳,获得10
10秒前
arzw完成签到,获得积分10
10秒前
传统的妖妖完成签到,获得积分20
12秒前
脑洞疼应助why采纳,获得10
12秒前
搞怪雁风发布了新的文献求助10
13秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
13秒前
一叶知秋应助杜晓雯采纳,获得10
13秒前
科研通AI5应助凌兰采纳,获得30
14秒前
14秒前
14秒前
Akim应助潘小蓝采纳,获得10
14秒前
未晞发布了新的文献求助10
15秒前
杨家欢完成签到 ,获得积分10
16秒前
17秒前
17秒前
VDC发布了新的文献求助10
17秒前
17秒前
Ayu王完成签到,获得积分10
17秒前
18秒前
所所应助gk采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197