清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

2D and 3D texture analysis to predict lymphovascular invasion in lung adenocarcinoma

医学 列线图 签名(拓扑) 淋巴血管侵犯 核医学 腺癌 内科学 放射科 接收机工作特性 肿瘤科 转移 人工智能 计算机科学 数学 癌症 几何学
作者
Guangli Yang,Pei Nie,Lianzi Zhao,Jian Guo,Wei Xue,Lei Yan,Jingjing Cui,Zhenguang Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:129: 109111-109111 被引量:29
标识
DOI:10.1016/j.ejrad.2020.109111
摘要

Purpose Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. Methods A total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. Results Maximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). Conclusions 2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
1分钟前
微笑高山完成签到 ,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
2分钟前
里昂义务完成签到,获得积分10
2分钟前
里昂义务发布了新的文献求助10
2分钟前
光合作用完成签到,获得积分10
2分钟前
fanssw完成签到 ,获得积分10
3分钟前
3分钟前
liuzhigang完成签到 ,获得积分10
3分钟前
JrPaleo101完成签到,获得积分10
4分钟前
Hiram完成签到,获得积分10
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
5分钟前
6分钟前
cadcae完成签到,获得积分20
6分钟前
林文隆完成签到,获得积分10
6分钟前
萱棚完成签到 ,获得积分10
6分钟前
温暖的蚂蚁完成签到 ,获得积分10
6分钟前
希望天下0贩的0应助liudy采纳,获得10
7分钟前
雪流星完成签到 ,获得积分10
7分钟前
7分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
7分钟前
liudy完成签到,获得积分10
7分钟前
liudy发布了新的文献求助10
7分钟前
7分钟前
7分钟前
8分钟前
玖月完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
Lucas应助科研通管家采纳,获得10
9分钟前
9分钟前
ChatGPT完成签到,获得积分10
9分钟前
传奇3应助asdf采纳,获得10
9分钟前
9分钟前
naczx完成签到,获得积分0
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229