2D and 3D texture analysis to predict lymphovascular invasion in lung adenocarcinoma

医学 列线图 签名(拓扑) 淋巴血管侵犯 核医学 腺癌 内科学 放射科 接收机工作特性 肿瘤科 转移 人工智能 计算机科学 数学 癌症 几何学
作者
Guangli Yang,Pei Nie,Lianzi Zhao,Jian Guo,Wei Xue,Lei Yan,Jingjing Cui,Zhenguang Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:129: 109111-109111 被引量:29
标识
DOI:10.1016/j.ejrad.2020.109111
摘要

Purpose Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. Methods A total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. Results Maximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). Conclusions 2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助墨尘采纳,获得10
刚刚
崔宁宁完成签到 ,获得积分10
1秒前
斗鱼泡泡完成签到,获得积分10
1秒前
TG303完成签到,获得积分10
3秒前
Bing完成签到,获得积分20
3秒前
3秒前
YL完成签到,获得积分10
4秒前
4秒前
优雅的猪完成签到,获得积分10
4秒前
5秒前
hmx完成签到,获得积分20
5秒前
111完成签到 ,获得积分10
6秒前
瑶瑶酱完成签到,获得积分10
6秒前
xue完成签到,获得积分10
6秒前
斯文含双发布了新的文献求助30
8秒前
hmx发布了新的文献求助10
9秒前
Spring完成签到 ,获得积分10
9秒前
luoshi应助LBJ23采纳,获得10
9秒前
琉璃岁月发布了新的文献求助10
9秒前
白枫完成签到 ,获得积分10
10秒前
10秒前
李志明完成签到,获得积分10
10秒前
11秒前
11秒前
魔幻的荔枝完成签到,获得积分10
12秒前
12秒前
善良鱼哟完成签到,获得积分10
12秒前
苹果硬币关注了科研通微信公众号
13秒前
14秒前
14秒前
Chaos发布了新的文献求助10
14秒前
15秒前
麻辣烫完成签到 ,获得积分10
15秒前
15秒前
16秒前
深情安青应助南风知我意采纳,获得10
16秒前
funny完成签到,获得积分10
17秒前
小鱼爱吃肉应助唯心止论采纳,获得10
18秒前
糖糖发布了新的文献求助10
18秒前
4645完成签到 ,获得积分10
19秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347218
求助须知:如何正确求助?哪些是违规求助? 2973707
关于积分的说明 8660707
捐赠科研通 2654207
什么是DOI,文献DOI怎么找? 1453525
科研通“疑难数据库(出版商)”最低求助积分说明 672939
邀请新用户注册赠送积分活动 663018