2D and 3D texture analysis to predict lymphovascular invasion in lung adenocarcinoma

医学 列线图 签名(拓扑) 淋巴血管侵犯 核医学 腺癌 内科学 放射科 接收机工作特性 肿瘤科 转移 人工智能 计算机科学 数学 癌症 几何学
作者
Guangli Yang,Pei Nie,Lianzi Zhao,Jian Guo,Wei Xue,Lei Yan,Jingjing Cui,Zhenguang Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:129: 109111-109111 被引量:29
标识
DOI:10.1016/j.ejrad.2020.109111
摘要

Purpose Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. Methods A total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. Results Maximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). Conclusions 2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZeroSer完成签到,获得积分20
刚刚
1秒前
天天快乐应助Spy_R采纳,获得10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
hu123完成签到,获得积分10
2秒前
我是老大应助自觉羊采纳,获得10
2秒前
勤奋山晴完成签到,获得积分10
3秒前
青苔发布了新的文献求助30
4秒前
怕孤单的幻枫完成签到 ,获得积分20
4秒前
Orange应助飞快的以冬采纳,获得10
4秒前
xiaoxiao完成签到,获得积分10
4秒前
4秒前
Owen应助为喵驾车的月亮采纳,获得10
5秒前
秦秦发布了新的文献求助10
5秒前
李文俊是我太孙完成签到,获得积分10
5秒前
典雅的静发布了新的文献求助10
5秒前
Smile发布了新的文献求助10
5秒前
luhui发布了新的文献求助10
5秒前
5秒前
5秒前
echo完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
单纯一笑发布了新的文献求助10
8秒前
Criminology34应助dali采纳,获得10
8秒前
情怀应助柚子采纳,获得10
9秒前
9秒前
yiy37完成签到,获得积分10
9秒前
李健应助文静宛亦采纳,获得10
9秒前
紧张的绿茶完成签到,获得积分10
10秒前
fay发布了新的文献求助10
10秒前
激动的煎饼完成签到,获得积分10
10秒前
奋斗寻绿完成签到,获得积分10
11秒前
JamesPei应助TT采纳,获得10
11秒前
汉堡包应助Liu采纳,获得10
11秒前
11秒前
zzhc发布了新的文献求助10
11秒前
12秒前
一对二发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723