Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO2 Electroreduction

过电位 阳离子聚合 乙烯 共价键 纳米颗粒 电解 化学 法拉第效率 电子转移 选择性 无机化学 电化学 材料科学 光化学 纳米技术 有机化学 催化作用 电极 电解质 物理化学
作者
Min‐Jie Mao,Meng‐Di Zhang,Dongli Meng,Jianxin Chen,Chang He,Yuan‐Biao Huang,Rong Cao
出处
期刊:Chemcatchem [Wiley]
卷期号:12 (13): 3530-3536 被引量:32
标识
DOI:10.1002/cctc.202000387
摘要

Abstract The highly selective production of reduced multicarbon products with long‐term durability for CO 2 electroreduction reaction (CO 2 RR) using clean and renewable electricity is currently a major challenge. Copper nanoparticles (Cu NPs) are exceptionally advantageous for CO 2 RR to yield multielectron transfer chemical products such as ethylene and ethanol. However, Cu NPs for CO 2 RR generally require high overpotential to produce multiple electron transfer C 2+ products with poor stability. Herein, an imidazolium‐functionalized covalent triazine framework (ICTF) stabilized Cu NPs (Cu/ICTF) for the enhanced CO 2 RR to produce ethylene is reported. The imidazolium groups in the cationic ICTF not only can enhance CO 2 capture capacity and lower the energetic barrier to activate CO 2 , but also the in situ formed N‐heterocyclic carbenes (NHC) could stabilize Cu NPs to prevent their deactivation. Thus, the Cu/ICTF demonstrated higher selectivity (35 %) for the electroreduction of CO 2 to ethylene with larger partial current density of ethylene (4.14 mA cm −2 ) over the unmodified neutral CTF stabilized Cu NPs (Cu/CTF) with 29 % Faradaic efficiency (FE) of ethylene and current density of 3.69 mA cm −2 . Moreover, the active sites could be stabilized by the in situ produced NHC in ICTF and the current density and C 2 H 4 FE of Cu/ICTF 50 were almost maintained after 10 h continuous electrolysis experiment, while the C 2 H 4 FE of Cu/CTF 50 were lost ca. 42 % of its original value after 7 h. This strategy provides a facile approach to stabilize active sites for CO 2 RR and may bring new inspiration to apply in energy storage and conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
张琼敏发布了新的文献求助20
2秒前
赘婿应助Lc采纳,获得10
5秒前
Ava应助火火采纳,获得10
5秒前
6秒前
英俊的文龙完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
11秒前
12秒前
Orange应助武狼帝采纳,获得10
13秒前
深情安青应助科研小崩豆采纳,获得10
14秒前
杨天水发布了新的文献求助10
15秒前
明月逐人归完成签到,获得积分10
16秒前
zyx发布了新的文献求助10
17秒前
21秒前
21秒前
充电宝应助张琼敏采纳,获得10
21秒前
冰魂应助butterfly采纳,获得20
21秒前
wyc发布了新的文献求助10
22秒前
方勇飞发布了新的文献求助10
24秒前
25秒前
Min完成签到,获得积分10
26秒前
27秒前
28秒前
方勇飞完成签到,获得积分10
29秒前
30秒前
33秒前
武狼帝发布了新的文献求助10
34秒前
34秒前
Azazel发布了新的文献求助10
35秒前
Lc发布了新的文献求助10
36秒前
37秒前
三瓣橘子完成签到,获得积分10
38秒前
38秒前
高分求助中
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775349
求助须知:如何正确求助?哪些是违规求助? 3321018
关于积分的说明 10203117
捐赠科研通 3035869
什么是DOI,文献DOI怎么找? 1665800
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740