Strongly Enhanced Dielectric Response and Structural Investigation of (Sr2+, Ge4+) Co-Doped CCTO Ceramics

材料科学 晶界 电介质 陶瓷 烧结 介电损耗 耗散因子 兴奋剂 介电常数 复合材料 相界 相(物质) 陶瓷电容器 活化能 掺杂剂 矿物学 分析化学(期刊) 微观结构 电容器 光电子学 化学 物理化学 电气工程 工程类 电压 有机化学 色谱法
作者
Jakkree Boonlakhorn,Narong Chanlek,Prasit Thongbai,Pornjuk Srepusharawoot
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (38): 20682-20692 被引量:55
标识
DOI:10.1021/acs.jpcc.0c04484
摘要

A solid–state reaction method was used to prepare (Sr2+, Ge4+) co-doped CaCu3Ti4O12 ceramics. A single-phase of CaCu3Ti4O12 was detected in all the ceramics. An enormous evolution of grain growth in (Sr2+, Ge4+) co-doped CaCu3Ti4O12 ceramics was observed, which was due to a liquid phase sintering mechanism. Theoretical calculations showed that Ge dopant ions are more likely substituted in Cu sites rather than Ti sites. High dielectric permittivity, ∼69,889, with a low dielectric loss tangent, ∼0.038, was achieved in a Ca0.95Sr0.05Cu3Ti3.95Ge0.05O12 ceramic. Furthermore, dielectric permittivity at 1 kHz of this ceramic is more temperature-stable than that of the CaCu3Ti4O12 and Ca0.95Sr0.05Cu3Ti4O12 ceramics. The enhanced dielectric permittivity with reduced loss tangent in the co-doped ceramics originated from a metastable insulating phase created by a liquid phase sintering mechanism. The local insulating phase along the grain boundary layers can increase the grain boundary resistance as well as the conduction activation energy of the grain boundaries, resulting in a decreased dielectric loss tangent. An internal barrier layer capacitor model supports the origin of the giant dielectric properties in CaCu3Ti4O12-based ceramics by all results in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hermit完成签到,获得积分10
刚刚
1秒前
爱听歌土豆完成签到 ,获得积分10
2秒前
2秒前
宜菏发布了新的文献求助10
3秒前
wssf756应助ChenYX采纳,获得20
4秒前
4秒前
周子博发布了新的文献求助10
4秒前
朴素定帮完成签到,获得积分10
5秒前
5秒前
偷菜帅哥发布了新的文献求助10
5秒前
CYYDNDB发布了新的文献求助10
5秒前
Arron完成签到,获得积分10
6秒前
文静元霜发布了新的文献求助10
7秒前
踩点行动完成签到,获得积分10
7秒前
7秒前
8秒前
abcdv发布了新的文献求助30
8秒前
李兴起完成签到,获得积分10
10秒前
威武的亦绿完成签到,获得积分20
11秒前
Jiye发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
Lee完成签到,获得积分20
13秒前
萧萧应助Bressanone采纳,获得10
13秒前
怕黑不惜完成签到,获得积分10
13秒前
15秒前
文静元霜完成签到,获得积分10
16秒前
小寒同学发布了新的文献求助10
16秒前
zhang完成签到 ,获得积分10
17秒前
听雨落发布了新的文献求助30
17秒前
NE发布了新的文献求助10
19秒前
仂尤发布了新的文献求助10
19秒前
dddd完成签到,获得积分10
20秒前
20秒前
Leslielaw完成签到,获得积分10
20秒前
Lee发布了新的文献求助10
20秒前
研友_VZG7GZ应助刘林美采纳,获得30
20秒前
Orange应助JarryChao采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298441
求助须知:如何正确求助?哪些是违规求助? 4446944
关于积分的说明 13841126
捐赠科研通 4332352
什么是DOI,文献DOI怎么找? 2378131
邀请新用户注册赠送积分活动 1373367
关于科研通互助平台的介绍 1338964