Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage

材料科学 石墨烯 氧化物 锂(药物) 石墨 氧化石墨 化学工程 萃取(化学) 插层(化学) 电导率 扩散 分子 纳米技术 离子 复合材料 无机化学 有机化学 物理化学 化学 冶金 内分泌学 工程类 物理 热力学 医学
作者
Yushan Zhang,Bin‐Mei Zhang,Yuxia Hu,Jun Li,Chun Lu,Mingjin Liu,Kuangye Wang,Ling‐Bin Kong,Chen‐Zi Zhao,Wen‐Jun Niu,Wenwu Liu,Kun Zhao,Mao‐Cheng Liu,Yu‐Lun Chueh
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:34: 45-52 被引量:54
标识
DOI:10.1016/j.ensm.2020.08.021
摘要

Graphite has been commercialized as a material of lithium ions batteries because of its abundant source, low cost and excellent conductivity while the small interlayer spacing of graphite limits its application for Na+ insertion/extraction. Herein, an emerging and effective approach—chain-like H2N(CH2)xNH2 locked between graphene oxide (GO) sheets to expand the interlayer spacing of graphene with enhanced stability of layered structure was demonstrated by a dehydration condensation reaction. The as-obtained H2N(CH2)xNH2, which can link GO (xDM-GO), exhibits a lock-link structure, resulting in expanded interlayer spacing, with which the excellent Na+ storage performance with a high specific discharge capacity of 158.1 mAh g−1 at 0.1 A g−1 and outstanding capacity retention of 82.2% at a current density of 1 A g−1 can be achieved. The effects of interlayer spacing on Na+ diffusion coefficient and the rate capability were investigated, for which 0.95 nm is the most suitable interlayer spacing for the Na+ insertion/extraction. The novel strategy demonstrates an effective way to controllably tune the interlayer spacing with the improved structure stability of GO, resulting in the best Na+ insertion/extraction behavior with the excellent Na+ storage performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11220发布了新的文献求助10
1秒前
1秒前
小小Li发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
Firo完成签到,获得积分10
5秒前
结实乐荷完成签到,获得积分10
5秒前
5秒前
zeannezg发布了新的文献求助10
6秒前
jjn完成签到,获得积分10
6秒前
药膳干发布了新的文献求助10
8秒前
碧蓝曼冬发布了新的文献求助10
8秒前
彭于晏应助默默寒珊采纳,获得10
8秒前
8秒前
爆米花应助明理夏槐采纳,获得10
9秒前
10秒前
万能图书馆应助酷酷梦旋采纳,获得10
11秒前
12秒前
tjzbw完成签到,获得积分10
12秒前
李健应助ncycg采纳,获得10
12秒前
12秒前
HELIXIA发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
qwe发布了新的文献求助10
17秒前
18秒前
sll完成签到 ,获得积分10
18秒前
CWY关闭了CWY文献求助
18秒前
li完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21秒前
明理夏槐发布了新的文献求助10
22秒前
爆米花应助小可不怕困难采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039