Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
希望天下0贩的0应助jw采纳,获得10
刚刚
NexusExplorer应助wodetaiyangLLL采纳,获得10
刚刚
kenny2023发布了新的文献求助10
刚刚
Smar_zcl应助土豆很好吃采纳,获得20
1秒前
无芒发布了新的文献求助10
1秒前
Meiyu发布了新的文献求助10
2秒前
wrx发布了新的文献求助10
2秒前
Demon发布了新的文献求助10
2秒前
2秒前
体验发布了新的文献求助10
2秒前
lynn016完成签到,获得积分10
3秒前
Xx发布了新的文献求助10
3秒前
孙红完成签到,获得积分10
3秒前
3秒前
wangmanli发布了新的文献求助30
4秒前
大模型应助茶茶采纳,获得10
4秒前
ChenxiPan发布了新的文献求助10
4秒前
英俊的铭应助蓝天0812采纳,获得10
6秒前
SJD完成签到,获得积分0
6秒前
7秒前
一一发布了新的文献求助10
8秒前
9秒前
All_fly应助LT采纳,获得10
9秒前
Ysk完成签到,获得积分10
9秒前
SciGPT应助胡子西瓜采纳,获得10
9秒前
Why顺利完成签到,获得积分10
10秒前
11秒前
11秒前
Ava应助无芒采纳,获得10
11秒前
11秒前
学术垃圾完成签到,获得积分10
12秒前
Lucas应助染小七采纳,获得10
12秒前
yzhilson完成签到 ,获得积分0
13秒前
淡然鸡翅完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
jw发布了新的文献求助10
15秒前
柏文鸽完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351368
求助须知:如何正确求助?哪些是违规求助? 4484455
关于积分的说明 13959104
捐赠科研通 4383984
什么是DOI,文献DOI怎么找? 2408721
邀请新用户注册赠送积分活动 1401290
关于科研通互助平台的介绍 1374800