Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姚姚姚发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
彭于晏应助陈文娜采纳,获得10
1秒前
rubyyuan8006完成签到,获得积分10
2秒前
2秒前
ZKai完成签到,获得积分20
2秒前
英吉利25发布了新的文献求助10
2秒前
AJKLDJAK发布了新的文献求助10
2秒前
3秒前
scuter完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
善学以致用应助酷炫大米采纳,获得10
4秒前
内坻崿完成签到,获得积分10
4秒前
乔笑晴完成签到,获得积分20
4秒前
田様应助犹豫海莲采纳,获得10
4秒前
5秒前
无花果应助风清扬采纳,获得10
5秒前
5秒前
5秒前
scuter发布了新的文献求助10
5秒前
6秒前
6秒前
乃惜发布了新的文献求助10
7秒前
TUTUKing发布了新的文献求助10
7秒前
康康爱研究完成签到 ,获得积分10
7秒前
7秒前
xiaosu完成签到,获得积分10
7秒前
冷酷芷雪发布了新的文献求助30
8秒前
aihaimu完成签到,获得积分10
8秒前
科研临时工完成签到,获得积分10
8秒前
9秒前
小饼干发布了新的文献求助30
9秒前
icebear发布了新的文献求助10
9秒前
9秒前
斐然完成签到,获得积分10
9秒前
Msure完成签到,获得积分10
9秒前
姚姚姚完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010