Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqsf789发布了新的文献求助10
2秒前
Criminology34应助文文采纳,获得20
2秒前
起床做核酸完成签到,获得积分10
3秒前
3秒前
3秒前
李健的小迷弟应助wyd222采纳,获得10
4秒前
鱼辞发布了新的文献求助10
4秒前
4秒前
bkagyin应助青青草原阿懒采纳,获得10
5秒前
畅快黎昕发布了新的文献求助30
5秒前
5秒前
青筠发布了新的文献求助10
5秒前
6秒前
善学以致用应助老地方采纳,获得10
7秒前
lxl完成签到,获得积分10
7秒前
舒适的尔容完成签到,获得积分20
7秒前
zds发布了新的文献求助10
8秒前
小七发布了新的文献求助10
8秒前
8秒前
要多喝水发布了新的文献求助50
9秒前
CipherSage应助yqsf789采纳,获得10
9秒前
9秒前
明理的蜗牛完成签到,获得积分10
9秒前
雨灵发布了新的文献求助10
9秒前
丘比特应助安然采纳,获得10
10秒前
111111发布了新的文献求助10
10秒前
乐乐应助喜悦的铭采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
gxcfdc发布了新的文献求助30
12秒前
Leon完成签到,获得积分10
13秒前
浮游应助小蚂蚁采纳,获得10
14秒前
归尘发布了新的文献求助20
14秒前
15秒前
16秒前
a怪完成签到,获得积分10
17秒前
香蕉觅云应助鱼辞采纳,获得10
17秒前
酷炫的万天完成签到,获得积分20
18秒前
18秒前
希淇完成签到 ,获得积分10
18秒前
linmu发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492