亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Prometheusss完成签到,获得积分10
10秒前
11秒前
Prometheusss发布了新的文献求助10
14秒前
siriuslee99完成签到,获得积分10
27秒前
TT关注了科研通微信公众号
40秒前
blenx完成签到,获得积分10
41秒前
53秒前
TT发布了新的文献求助10
59秒前
小学生的练习簿完成签到,获得积分0
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
1分钟前
CC关闭了CC文献求助
1分钟前
CC发布了新的文献求助10
2分钟前
Jasper应助nhh采纳,获得10
3分钟前
3分钟前
3分钟前
nhh发布了新的文献求助10
3分钟前
研友_Lw7OvL完成签到 ,获得积分10
3分钟前
huiliang完成签到,获得积分10
4分钟前
5分钟前
5分钟前
cc完成签到,获得积分10
6分钟前
酷酷的数据线完成签到,获得积分10
6分钟前
as完成签到 ,获得积分10
6分钟前
我爱陶子完成签到 ,获得积分10
6分钟前
6分钟前
automan发布了新的文献求助10
6分钟前
7分钟前
7分钟前
gszy1975完成签到,获得积分10
8分钟前
8分钟前
田様应助愉快谷芹采纳,获得10
9分钟前
9分钟前
愉快谷芹发布了新的文献求助10
9分钟前
10分钟前
RONG完成签到 ,获得积分10
10分钟前
sweets完成签到,获得积分10
10分钟前
zly完成签到 ,获得积分10
10分钟前
飞天大南瓜完成签到,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303024
求助须知:如何正确求助?哪些是违规求助? 4450031
关于积分的说明 13848953
捐赠科研通 4336452
什么是DOI,文献DOI怎么找? 2380950
邀请新用户注册赠送积分活动 1375907
关于科研通互助平台的介绍 1342372