已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助Su采纳,获得10
1秒前
今后应助lxz采纳,获得10
2秒前
包容的以彤完成签到 ,获得积分10
2秒前
辞却发布了新的文献求助30
3秒前
合适小刺猬完成签到,获得积分10
3秒前
左眼天堂发布了新的文献求助10
3秒前
4秒前
njtechfms完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
8秒前
211发布了新的文献求助10
10秒前
11秒前
nidie发布了新的文献求助10
11秒前
TTT发布了新的文献求助10
11秒前
KYT完成签到 ,获得积分10
12秒前
夏紊完成签到 ,获得积分10
13秒前
lxz发布了新的文献求助10
13秒前
山君发布了新的文献求助10
14秒前
sys549发布了新的文献求助10
14秒前
15秒前
LZR发布了新的文献求助10
20秒前
ds完成签到,获得积分10
20秒前
Owen应助霓霓采纳,获得10
23秒前
24秒前
john2333完成签到,获得积分10
25秒前
优美紫槐发布了新的文献求助10
28秒前
28秒前
pluto应助辞却采纳,获得10
28秒前
草垛亮星星完成签到 ,获得积分10
29秒前
29秒前
30秒前
31秒前
星辰大海应助勤恳曲奇采纳,获得10
31秒前
32秒前
乐乐应助转转采纳,获得50
33秒前
优美紫槐发布了新的文献求助10
34秒前
34秒前
老刘完成签到,获得积分20
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745852
求助须知:如何正确求助?哪些是违规求助? 5429179
关于积分的说明 15354161
捐赠科研通 4885820
什么是DOI,文献DOI怎么找? 2626898
邀请新用户注册赠送积分活动 1575443
关于科研通互助平台的介绍 1532156