Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
风铃鸟完成签到,获得积分10
4秒前
fd163c完成签到,获得积分10
5秒前
5秒前
hsx发布了新的文献求助30
6秒前
哈牛完成签到 ,获得积分10
6秒前
Lucas应助温婉的翎采纳,获得10
7秒前
风铃鸟发布了新的文献求助10
7秒前
521完成签到,获得积分20
7秒前
future完成签到 ,获得积分10
12秒前
脾气暴躁的小兔完成签到,获得积分10
13秒前
慕青应助噜噜采纳,获得10
13秒前
乐观期待完成签到,获得积分10
16秒前
16秒前
18秒前
噜噜完成签到,获得积分10
19秒前
JJ发布了新的文献求助10
20秒前
SciGPT应助Charlie采纳,获得10
21秒前
所所应助jenny_shjn采纳,获得10
22秒前
噜噜发布了新的文献求助10
24秒前
25秒前
fyjlfy完成签到 ,获得积分10
26秒前
勿明应助刀锋采纳,获得50
31秒前
32秒前
大气金毛完成签到 ,获得积分10
33秒前
huahua发布了新的文献求助10
38秒前
Limerencia完成签到,获得积分10
38秒前
考拉发布了新的文献求助10
39秒前
Linden_bd完成签到 ,获得积分10
39秒前
唐新惠完成签到 ,获得积分10
39秒前
充电宝应助你想读博吗采纳,获得10
40秒前
lightgo应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
43秒前
思源应助科研通管家采纳,获得10
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
lightgo应助科研通管家采纳,获得10
43秒前
43秒前
彭于晏应助科研通管家采纳,获得10
43秒前
勤恳的黑夜完成签到 ,获得积分10
43秒前
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997