已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助surgeon慧采纳,获得10
刚刚
xlx发布了新的文献求助10
1秒前
向上的好青年完成签到,获得积分10
2秒前
VDC发布了新的文献求助10
2秒前
2秒前
赘婿应助阿尔卑斯采纳,获得10
3秒前
坚强煜城完成签到,获得积分10
4秒前
4秒前
yf发布了新的文献求助10
4秒前
li发布了新的文献求助10
5秒前
星辰大海应助欻欻欻采纳,获得10
5秒前
大桶茄子完成签到,获得积分10
7秒前
Ppao7ii完成签到,获得积分10
8秒前
新雨完成签到 ,获得积分10
9秒前
FWCY发布了新的文献求助10
10秒前
打开太阳完成签到,获得积分10
11秒前
12秒前
万能图书馆应助li采纳,获得10
14秒前
眼睛大的冷风完成签到 ,获得积分10
16秒前
孤灯剑客完成签到,获得积分10
16秒前
小二郎应助健康的半仙采纳,获得10
17秒前
17秒前
丘比特应助健康的半仙采纳,获得10
17秒前
17秒前
田様应助健康的半仙采纳,获得10
17秒前
科目三应助健康的半仙采纳,获得10
17秒前
丘比特应助健康的半仙采纳,获得10
17秒前
Mlh发布了新的文献求助10
17秒前
传奇3应助健康的半仙采纳,获得10
17秒前
完美世界应助健康的半仙采纳,获得10
17秒前
17秒前
善学以致用应助ada采纳,获得10
19秒前
20秒前
22秒前
22秒前
隐形大米完成签到 ,获得积分10
23秒前
yuyuan完成签到,获得积分10
23秒前
24秒前
时月Luna关注了科研通微信公众号
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590088
求助须知:如何正确求助?哪些是违规求助? 4674539
关于积分的说明 14794246
捐赠科研通 4630025
什么是DOI,文献DOI怎么找? 2532525
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468561