亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information

计算机科学 人工智能 图像质量 图像翻译 降噪 模式识别(心理学) 还原(数学) 噪音(视频) 图像(数学) 深度学习 计算机视觉 数学 几何学
作者
Chao Tang,Jie Li,Linyuan Wang,Ziheng Li,Lingyun Jiang,Ailong Cai,Wenkun Zhang,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2019: 1-11 被引量:53
标识
DOI:10.1155/2019/8639825
摘要

The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
流苏完成签到,获得积分10
4秒前
dynamoo发布了新的文献求助200
9秒前
浮游应助科研通管家采纳,获得10
25秒前
成就的秋应助科研通管家采纳,获得10
25秒前
小夏发布了新的文献求助10
30秒前
谨慎醉易发布了新的文献求助10
31秒前
45秒前
45秒前
小黑超努力完成签到 ,获得积分10
45秒前
小四发布了新的文献求助10
49秒前
谨慎醉易完成签到,获得积分10
52秒前
在水一方应助谨慎醉易采纳,获得10
56秒前
小四完成签到,获得积分10
56秒前
1分钟前
科研菜鸡完成签到,获得积分10
1分钟前
PJY发布了新的文献求助10
1分钟前
科研通AI2S应助PJY采纳,获得30
1分钟前
1分钟前
1分钟前
dynamoo发布了新的文献求助200
1分钟前
小夏发布了新的文献求助10
1分钟前
小夏完成签到,获得积分10
1分钟前
敏感的飞松完成签到 ,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
成就的秋应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得50
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
2分钟前
成就的秋应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
大个应助张静怡采纳,获得10
3分钟前
非我完成签到 ,获得积分10
3分钟前
3分钟前
张静怡发布了新的文献求助10
3分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
MTF完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540574
求助须知:如何正确求助?哪些是违规求助? 3974444
关于积分的说明 12310518
捐赠科研通 3641546
什么是DOI,文献DOI怎么找? 2005237
邀请新用户注册赠送积分活动 1040661
科研通“疑难数据库(出版商)”最低求助积分说明 929892