Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks

卷积神经网络 豪斯多夫距离 人工智能 计算机科学 分割 Sørensen–骰子系数 质心 雅卡索引 体素 核医学 胰腺癌 深度学习 参数统计 模式识别(心理学) 图像分割 数学 医学 癌症 统计 内科学
作者
Ying Liang,D. Schött,Ying Zhang,Zhiwu Wang,Haidy Nasief,E.S. Paulson,William A. Hall,Paul Knechtges,Bradley A. Erickson,X. Allen Li
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:145: 193-200 被引量:66
标识
DOI:10.1016/j.radonc.2020.01.021
摘要

Purpose The recently introduced MR-Linac enables MRI-guided Online Adaptive Radiation Therapy (MRgOART) of pancreatic cancer, for which fast and accurate segmentation of the gross tumor volume (GTV) is essential. This work aims to develop an algorithm allowing automatic segmentation of the pancreatic GTV based on multi-parametric MRI using deep neural networks. Methods We employed a square-window based convolutional neural network (CNN) architecture with three convolutional layer blocks. The model was trained using about 245,000 normal and 230,000 tumor patches extracted from 37 DCE MRI sets acquired in 27 patients with data augmentation. These images were bias corrected, intensity standardized, and resampled to a fixed voxel size of 1 × 1 × 3 mm3. The trained model was tested on 19 DCE MRI sets from another 13 patients, and the model-generated GTVs were compared with the manually segmented GTVs by experienced radiologist and radiation oncologists based on Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and Mean Surface Distance (MSD). Results The mean values and standard deviations of the performance metrics on the test set were DSC = 0.73 ± 0.09, HD = 8.11 ± 4.09 mm, and MSD = 1.82 ± 0.84 mm. The interobserver variations were estimated to be DSC = 0.71 ± 0.08, HD = 7.36 ± 2.72 mm, and MSD = 1.78 ± 0.66 mm, which had no significant difference with model performance at p values of 0.6, 0.52, and 0.88, respectively. Conclusion We developed a CNN-based model for auto-segmentation of pancreatic GTV in multi-parametric MRI. Model performance was comparable to expert radiation oncologists. This model provides a framework to incorporate multimodality images and daily MRI for GTV auto-segmentation in MRgOART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baobeikk完成签到,获得积分10
1秒前
美满的红酒完成签到 ,获得积分10
3秒前
精明冰蓝完成签到,获得积分10
3秒前
爆米花应助liquor采纳,获得10
4秒前
5秒前
cheryjay发布了新的文献求助150
6秒前
6秒前
大方听白完成签到 ,获得积分10
6秒前
imchenyin完成签到,获得积分10
7秒前
似鱼是于无所求完成签到,获得积分10
8秒前
海咲umi应助熊猫采纳,获得10
10秒前
解语花发布了新的文献求助10
10秒前
快乐小狗完成签到,获得积分10
11秒前
朴实雨竹完成签到,获得积分10
11秒前
完美世界应助韶华采纳,获得10
11秒前
倒霉兔子完成签到,获得积分0
12秒前
13秒前
13秒前
14秒前
yuchen完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
曹操的曹发布了新的文献求助30
17秒前
在水一方应助姗珊采纳,获得10
19秒前
19秒前
liquor发布了新的文献求助10
19秒前
竹马子完成签到,获得积分10
20秒前
20秒前
可爱的青荷完成签到 ,获得积分10
20秒前
Dawn完成签到,获得积分20
22秒前
22秒前
平安完成签到 ,获得积分10
23秒前
找文献找文献完成签到 ,获得积分10
23秒前
青木完成签到 ,获得积分10
24秒前
IDHNAPHO发布了新的文献求助10
24秒前
钰泠完成签到 ,获得积分10
26秒前
董梦晴发布了新的社区帖子
26秒前
小猪找库里完成签到,获得积分10
27秒前
Dawn发布了新的文献求助10
28秒前
江夏清完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832