Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks

卷积神经网络 豪斯多夫距离 人工智能 计算机科学 分割 Sørensen–骰子系数 质心 雅卡索引 体素 核医学 胰腺癌 深度学习 参数统计 模式识别(心理学) 图像分割 数学 医学 癌症 统计 内科学
作者
Ying Liang,D. Schött,Ying Zhang,Zhiwu Wang,Haidy Nasief,E.S. Paulson,William A. Hall,Paul Knechtges,Bradley A. Erickson,X. Allen Li
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:145: 193-200 被引量:66
标识
DOI:10.1016/j.radonc.2020.01.021
摘要

Purpose The recently introduced MR-Linac enables MRI-guided Online Adaptive Radiation Therapy (MRgOART) of pancreatic cancer, for which fast and accurate segmentation of the gross tumor volume (GTV) is essential. This work aims to develop an algorithm allowing automatic segmentation of the pancreatic GTV based on multi-parametric MRI using deep neural networks. Methods We employed a square-window based convolutional neural network (CNN) architecture with three convolutional layer blocks. The model was trained using about 245,000 normal and 230,000 tumor patches extracted from 37 DCE MRI sets acquired in 27 patients with data augmentation. These images were bias corrected, intensity standardized, and resampled to a fixed voxel size of 1 × 1 × 3 mm3. The trained model was tested on 19 DCE MRI sets from another 13 patients, and the model-generated GTVs were compared with the manually segmented GTVs by experienced radiologist and radiation oncologists based on Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and Mean Surface Distance (MSD). Results The mean values and standard deviations of the performance metrics on the test set were DSC = 0.73 ± 0.09, HD = 8.11 ± 4.09 mm, and MSD = 1.82 ± 0.84 mm. The interobserver variations were estimated to be DSC = 0.71 ± 0.08, HD = 7.36 ± 2.72 mm, and MSD = 1.78 ± 0.66 mm, which had no significant difference with model performance at p values of 0.6, 0.52, and 0.88, respectively. Conclusion We developed a CNN-based model for auto-segmentation of pancreatic GTV in multi-parametric MRI. Model performance was comparable to expert radiation oncologists. This model provides a framework to incorporate multimodality images and daily MRI for GTV auto-segmentation in MRgOART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛发布了新的文献求助30
1秒前
不止玫瑰有爱意完成签到,获得积分10
2秒前
轻松雁枫发布了新的文献求助10
2秒前
二拾发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
林早上发布了新的文献求助10
4秒前
所所应助清脆的书桃采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Criminology34应助孙泉采纳,获得10
6秒前
脑洞疼应助孙泉采纳,获得10
6秒前
天天向上发布了新的文献求助10
6秒前
可爱的函函应助优美紫槐采纳,获得10
6秒前
9秒前
大个应助清爽的如波采纳,获得10
11秒前
11秒前
二拾完成签到,获得积分10
11秒前
WW完成签到,获得积分10
11秒前
麦地娜发布了新的文献求助10
12秒前
小蘑菇应助glj采纳,获得30
12秒前
12秒前
lxd完成签到,获得积分10
13秒前
搜集达人应助Yuanyuan采纳,获得10
13秒前
15秒前
yang完成签到,获得积分10
15秒前
CodeCraft应助橘子采纳,获得10
15秒前
WW发布了新的文献求助10
15秒前
一个左正蹬完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
天天向上完成签到,获得积分10
20秒前
程小柒发布了新的文献求助10
21秒前
22秒前
CXS发布了新的文献求助10
22秒前
lemon发布了新的文献求助10
23秒前
23秒前
FashionBoy应助牛奶面包采纳,获得10
24秒前
Owen应助林一采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729634
求助须知:如何正确求助?哪些是违规求助? 5319737
关于积分的说明 15317209
捐赠科研通 4876640
什么是DOI,文献DOI怎么找? 2619450
邀请新用户注册赠送积分活动 1569001
关于科研通互助平台的介绍 1525547