Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks

卷积神经网络 豪斯多夫距离 人工智能 计算机科学 分割 Sørensen–骰子系数 质心 雅卡索引 体素 核医学 胰腺癌 深度学习 参数统计 模式识别(心理学) 图像分割 数学 医学 癌症 统计 内科学
作者
Ying Liang,D. Schött,Ying Zhang,Zhiwu Wang,Haidy Nasief,E.S. Paulson,William A. Hall,Paul Knechtges,Bradley A. Erickson,X. Allen Li
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:145: 193-200 被引量:66
标识
DOI:10.1016/j.radonc.2020.01.021
摘要

Purpose The recently introduced MR-Linac enables MRI-guided Online Adaptive Radiation Therapy (MRgOART) of pancreatic cancer, for which fast and accurate segmentation of the gross tumor volume (GTV) is essential. This work aims to develop an algorithm allowing automatic segmentation of the pancreatic GTV based on multi-parametric MRI using deep neural networks. Methods We employed a square-window based convolutional neural network (CNN) architecture with three convolutional layer blocks. The model was trained using about 245,000 normal and 230,000 tumor patches extracted from 37 DCE MRI sets acquired in 27 patients with data augmentation. These images were bias corrected, intensity standardized, and resampled to a fixed voxel size of 1 × 1 × 3 mm3. The trained model was tested on 19 DCE MRI sets from another 13 patients, and the model-generated GTVs were compared with the manually segmented GTVs by experienced radiologist and radiation oncologists based on Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and Mean Surface Distance (MSD). Results The mean values and standard deviations of the performance metrics on the test set were DSC = 0.73 ± 0.09, HD = 8.11 ± 4.09 mm, and MSD = 1.82 ± 0.84 mm. The interobserver variations were estimated to be DSC = 0.71 ± 0.08, HD = 7.36 ± 2.72 mm, and MSD = 1.78 ± 0.66 mm, which had no significant difference with model performance at p values of 0.6, 0.52, and 0.88, respectively. Conclusion We developed a CNN-based model for auto-segmentation of pancreatic GTV in multi-parametric MRI. Model performance was comparable to expert radiation oncologists. This model provides a framework to incorporate multimodality images and daily MRI for GTV auto-segmentation in MRgOART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dongdong发布了新的文献求助10
1秒前
1秒前
科研通AI5应助178181采纳,获得10
1秒前
qwert完成签到,获得积分20
1秒前
cm515531完成签到,获得积分10
1秒前
2秒前
2秒前
大一泽发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Ava应助yes采纳,获得10
5秒前
yyyhhh发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
星辰大海应助玄叶采纳,获得10
6秒前
乐观小之发布了新的文献求助10
7秒前
7秒前
7秒前
天真涵双发布了新的文献求助30
7秒前
淡淡依凝发布了新的文献求助30
7秒前
脑洞疼应助guozizi采纳,获得10
7秒前
张腾飞发布了新的文献求助20
8秒前
科研饼发布了新的文献求助10
8秒前
9秒前
今后应助洁净的锦程采纳,获得10
10秒前
10秒前
10秒前
manman发布了新的文献求助10
11秒前
11秒前
大一泽完成签到,获得积分20
11秒前
Orange应助fxy采纳,获得10
12秒前
852应助xiangdemeilo采纳,获得10
12秒前
麻果发布了新的文献求助10
12秒前
Orange应助勤劳的鸡采纳,获得10
12秒前
顾矜应助abc123采纳,获得10
12秒前
12秒前
跳跃发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111