Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: Evolution of reactive oxygen species and mechanism

单线态氧 化学 氧气 催化作用 光化学 活性氧 电子顺磁共振 羟基自由基 离解(化学) 氧化还原 分解 析氧 超氧化物 激进的 无机化学 有机化学 电化学 物理化学 电极 物理 生物化学 核磁共振
作者
Ying Zhao,Hongze An,Guojun Dong,Jing Feng,Tong Wei,Yueming Ren,Jun Ma
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:388: 124371-124371 被引量:152
标识
DOI:10.1016/j.cej.2020.124371
摘要

Oxygen vacancies (OVs) modulation has emerged as a prevalent strategy to optimize the performance of Fenton-like catalysts. Nevertheless, the OVs-induced evolution of reactive oxygen species (ROSs) and associated mechanisms in the Fenton-like process remain insufficient. Herein, a series of oxygen-defective AgFe1−xNixO2 were synthesized to enhance peroxymonosulfate (PMS) decomposition and efficient degradation of bisphenol A (BPA) in water. The total amounts of OVs were regulated by varying the ratio of Ni dopant. Compared with original AgFeO2, the AgFe1−xNixO2 with rich OVs exhibited a better redox potential for PMS interaction and a lower reaction energy barrier of PMS decomposition. Superoxide radical (O2−) and singlet oxygen (1O2) worked as the dominant ROSs during the oxidation, rather than traditional sulfate radical (SO4−) or hydroxyl radical (OH). Notably, in situ electron spin resonance witnessed the evolution of growing O2− and 1O2, as well as lessened SO4− and OH with increasing OVs content. It was mainly attributed to the preferential dissociation of PMS into O2 on the OVs, additionally, OVs facilitated the superior surface oxygen mobility and electrical conductivity, which also gave rise to a significant enhancement in O2− and 1O2 generation. Consequently, an OVs-dependent PMS activation mechanism was proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
习习应助zhu96114748采纳,获得10
刚刚
英姑应助韭菜盒子采纳,获得10
刚刚
jbzmm完成签到 ,获得积分10
刚刚
36456657应助虚安采纳,获得10
1秒前
张真狗完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
深情安青应助xxx采纳,获得10
1秒前
1秒前
yqf完成签到,获得积分10
2秒前
MADKAI发布了新的文献求助10
2秒前
乐乐应助燕尔蓝采纳,获得10
3秒前
JamesPei应助柔弱煎饼采纳,获得30
3秒前
习习应助甜甜的向卉采纳,获得10
3秒前
xunxunmimi发布了新的文献求助10
3秒前
3秒前
温暖哈密瓜完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
聆听雨完成签到,获得积分10
5秒前
Ymj完成签到,获得积分10
5秒前
怡然若雁完成签到,获得积分10
5秒前
5秒前
坚强亦丝应助游大达采纳,获得10
6秒前
@小小搬砖瑞完成签到,获得积分10
6秒前
怡然若雁发布了新的文献求助10
8秒前
coc关注了科研通微信公众号
8秒前
双双完成签到,获得积分10
8秒前
瑶625发布了新的文献求助10
8秒前
Strike完成签到,获得积分10
9秒前
调皮纸飞机完成签到,获得积分20
9秒前
董小李完成签到,获得积分10
9秒前
9秒前
研友_8yN60L完成签到,获得积分10
10秒前
zhanzhanzhan发布了新的文献求助10
10秒前
科研通AI5应助自爱悠然采纳,获得10
10秒前
10秒前
Accept应助胡枝子采纳,获得30
10秒前
Strike发布了新的文献求助10
11秒前
Rsoup完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740