材料科学
可重用性
金属有机骨架
原位
复合材料
金属
有机化学
吸附
冶金
计算机科学
化学
程序设计语言
软件
作者
Zixin Zhou,Zijing Gao,Hao Shen,Mengqi Li,Wenting He,Ping Su,Jiayi Song,Yi Yang
标识
DOI:10.1021/acsami.9b23526
摘要
In recent years, metal–organic frameworks (MOFs) have been extensively studied as candidate enzyme immobilization platforms. However, conventional MOF–enzyme composites usually exhibit low controllability and reusability. In this study, a novel and stable strategy for enzyme immobilization was designed by use of ZIF-8 to encapsulate in situ DNA–enzyme composites on the surface of magnetic particles (MPs). The mechanism of in situ encapsulation was discussed in detail. It was found that immobilized enzymes were involved in the growth of ZIF-8, and the DNA cross-linking agents promoted the growth of ZIF-8 on the surface of MP. The thermal, chemical, and physical stabilities of horseradish peroxidase (HRP) were all significantly enhanced after in situ encapsulation. Most importantly, this strategy was proven to be a general platform that can be used to stabilize various proteins. The in situ encapsulation strategy was expanded to immobilize a cascade of enzymes, and ZIF-8@MPGOx–HRP possessed high selectivity and a wide linear range (25–500 μM) for glucose detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI