生物炭
吸附
化学
零电荷点
水溶液
废水
无机化学
核化学
热解
环境工程
有机化学
工程类
作者
Siyuan Wang,Jin‐Hyeob Kwak,Md. Shahinoor Islam,M. Anne Naeth,Mohamed Gamal El‐Din,Scott X. Chang
标识
DOI:10.1016/j.scitotenv.2020.136538
摘要
Biochar is a promising material for efficient removal of toxic metals from wastewater to meet standards for discharge into surface water. We characterized adsorption behaviour of willow (Salix alba) wood (WW) and cattle manure (CM) and their biochars, willow wood biochar (WWB) and cattle manure biochar (CMB), and elucidated the mechanisms for the removal of Ni(II), Cu(II) and Cd(II) from aqueous solutions. The kinetic adsorption suggests that the adsorption of Ni(II), Cu(II) and Cd(II) by feedstock and their biochars was controlled by mass transport, and chemisorption also played a role in the adsorption process. The Elovich model also well described the adsorption kinetics for WW and CM (R2 > 0.92), indicating that heterogeneous diffusion was the mechanism. The Sips isotherm model fitted best (R2 > 0.98) for Ni(II), Cu(II) and Cd(II) adsorption by the feedstocks and their biochars, indicating that both monolayer and multilayer adsorption played roles on the heterogeneous surfaces of the four adsorbents. The WWB had a higher while the CMB had a lower adsorption capacity than their respective feedstock due to the presence of abundant –COOH functional group on WWB surface to interact with Ni(II), Cu(II) and Cd(II) to form surface complexes. The higher specific surface area and lower pH of point of zero charge (PZC) of WWB were other contributing factors for its greater removal capacity. Therefore, we conclude that proper feedstocks need to be selected to produce biochars that are efficient for the removal of toxic metals from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI