Accurate and Fast Deep Evolutionary Networks Structured Representation Through Activating and Freezing Dense Networks

计算机科学 多样性(控制论) 趋同(经济学) 构造(python库) 人工神经网络 培训(气象学) 人工智能 深度学习 代表(政治) 点(几何) 进化算法 计算机网络 物理 法学 经济 气象学 几何学 政治 经济增长 数学 政治学
作者
Dayu Tan,Wei Zhong,Xin Peng,Qiang Wang,Vladimir Mahalec
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 102-115 被引量:3
标识
DOI:10.1109/tcds.2020.3017100
摘要

Deep neural networks have been scaled up to thousands of layers with the intent to improve their accuracy. Unfortunately, after some point, doubling the number of layers leads to only minor improvements, while the training difficulties increase substantially. In this article, we present an approach for constructing high-accuracy deep evolutionary networks and train them by activating and freezing dense networks (AFNets). The activating and freezing strategy enables us to reduce the classification error of test and reduce the training time required for deeper dense networks. We activate the layers that are being trained and construct a freezing box to freeze the idle and pretrained network layers in order to minimize memory consumption. The training speed in the early stage is not fast enough because many layers are activated for training. As the epochs gradually increase, the training speed becomes faster and faster since fewer and fewer layers are activated. Our method improves the convergence to the optimal performance within a limited number of epochs. Comprehensive experiments on a variety of data sets show that the proposed model achieves better performance when compared to the other state-of-the-art network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adheret完成签到,获得积分10
1秒前
笨笨猪发布了新的文献求助10
1秒前
单薄的誉发布了新的文献求助10
1秒前
Lucky完成签到,获得积分10
2秒前
2秒前
李健应助淡淡猎豹采纳,获得10
2秒前
3秒前
yuanyuan完成签到,获得积分20
4秒前
隐形曼青应助Lemon采纳,获得10
5秒前
6秒前
梁不二完成签到,获得积分10
6秒前
7秒前
罗嘉尔发布了新的文献求助10
7秒前
7秒前
15884134873完成签到,获得积分10
8秒前
慕青应助古兰桑克斯的闪采纳,获得10
9秒前
叶微微发布了新的文献求助10
9秒前
9秒前
9秒前
哈哈哈完成签到,获得积分20
10秒前
Yang_Yuting发布了新的文献求助10
11秒前
11秒前
SciGPT应助简单而复杂采纳,获得10
11秒前
13秒前
13秒前
刘善行完成签到,获得积分10
13秒前
隐形曼青应助Yx采纳,获得10
13秒前
13秒前
13秒前
Leo_Sun完成签到,获得积分10
14秒前
zhenzhen发布了新的文献求助10
14秒前
ark861023发布了新的文献求助10
14秒前
wanci应助梅零落采纳,获得10
15秒前
曾经以亦完成签到,获得积分10
15秒前
麻辣爆锅发布了新的文献求助10
16秒前
liangye2222完成签到,获得积分10
18秒前
叶微微完成签到,获得积分10
18秒前
千寻发布了新的文献求助10
18秒前
尹静涵完成签到 ,获得积分10
19秒前
马牛逼完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272