Accurate and Fast Deep Evolutionary Networks Structured Representation Through Activating and Freezing Dense Networks

计算机科学 多样性(控制论) 趋同(经济学) 构造(python库) 人工神经网络 培训(气象学) 人工智能 深度学习 代表(政治) 点(几何) 进化算法 计算机网络 物理 法学 经济 气象学 几何学 政治 经济增长 数学 政治学
作者
Dayu Tan,Wei Zhong,Xin Peng,Qiang Wang,Vladimir Mahalec
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 102-115 被引量:3
标识
DOI:10.1109/tcds.2020.3017100
摘要

Deep neural networks have been scaled up to thousands of layers with the intent to improve their accuracy. Unfortunately, after some point, doubling the number of layers leads to only minor improvements, while the training difficulties increase substantially. In this article, we present an approach for constructing high-accuracy deep evolutionary networks and train them by activating and freezing dense networks (AFNets). The activating and freezing strategy enables us to reduce the classification error of test and reduce the training time required for deeper dense networks. We activate the layers that are being trained and construct a freezing box to freeze the idle and pretrained network layers in order to minimize memory consumption. The training speed in the early stage is not fast enough because many layers are activated for training. As the epochs gradually increase, the training speed becomes faster and faster since fewer and fewer layers are activated. Our method improves the convergence to the optimal performance within a limited number of epochs. Comprehensive experiments on a variety of data sets show that the proposed model achieves better performance when compared to the other state-of-the-art network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贾明灵发布了新的文献求助10
1秒前
朝朝完成签到,获得积分10
1秒前
1秒前
左安彤完成签到,获得积分10
2秒前
打打应助威武的泽洋采纳,获得30
2秒前
Markus发布了新的文献求助30
5秒前
初雪完成签到,获得积分10
5秒前
汉堡包应助蓝色天空采纳,获得10
5秒前
科研通AI6应助sure采纳,获得10
6秒前
ZeKaWa应助tp040900采纳,获得20
6秒前
天天快乐应助无端采纳,获得10
7秒前
张小北完成签到,获得积分10
7秒前
lj发布了新的文献求助10
8秒前
8秒前
英姑应助jitanxiang采纳,获得10
9秒前
萧湘完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
朱厚璁发布了新的文献求助10
13秒前
zhulinling完成签到,获得积分10
13秒前
科研通AI2S应助zqm采纳,获得10
13秒前
13秒前
啊哈完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助150
17秒前
YElv完成签到,获得积分10
19秒前
jiay发布了新的文献求助30
20秒前
上官若男应助艾克j采纳,获得10
21秒前
QWE发布了新的文献求助10
21秒前
善学以致用应助朱厚璁采纳,获得10
21秒前
无端发布了新的文献求助10
22秒前
蓝色天空发布了新的文献求助10
22秒前
老奈发布了新的文献求助10
22秒前
sen123完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868