Maize seed classification using hyperspectral image coupled with multi-linear discriminant analysis

高光谱成像 线性判别分析 人工智能 模式识别(心理学) 支持向量机 特征选择 判别式 计算机科学 变量消去 主成分分析 投影(关系代数) 降维 上下文图像分类 数学 特征(语言学) 图像(数学) 算法 哲学 语言学 推论
作者
Chao Xia,Sai Yang,Min Huang,Qibing Zhu,Ya Guo,Jianwei Qin
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:103: 103077-103077 被引量:76
标识
DOI:10.1016/j.infrared.2019.103077
摘要

Abstract Seed purity is an important parameter for evaluating seed quality and can be effectively studied by seed classification. Hyperspectral images between 400 and 1000 nm were acquired for 1632 maize seeds (17 varieties) for classifying seed varieties. Fourteen features including a spectral feature and 13 imaging features (i.e., 5 first-order and 8 s-order textural features) were extracted from the hyperspectral image data. A multi-linear discriminant analysis (MLDA) algorithm was developed to select the optimal wavelength and transform/reduce the classification features to improve the acquisition and processing speed of the hyperspectral images. Least square support vector machine was used to develop classification models based on MLDA with spectral features, imaging features, and combination of spectral and imaging features. The effects of MLDA, uninformative variable elimination (UVE) coupled with linear discriminant analysis (LDA), and successive projection algorithm (SPA) coupled with LDA were adopted. Experimental results indicate that the combination feature based on the wavelength selection algorithm of MLDA yielded high classification accuracy under the same number of wavelengths (varying between 5 and 15). Meanwhile, the classification model based on MLDA feature transformation/reduction method achieved superior classification accuracy of 99.13% over SPA coupled with LDA (90.31%) and UVE coupled with LDA (94.17%) and improved by 2.74% relative to that of the mean spectrum of the full wavelength model. The proposed method can be used effectively for seed identification and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
abc发布了新的文献求助10
1秒前
妮夏发布了新的文献求助10
1秒前
成就的小熊猫完成签到,获得积分10
5秒前
珍狗关注了科研通微信公众号
6秒前
昊昊发布了新的文献求助10
7秒前
7秒前
阳光的青槐关注了科研通微信公众号
8秒前
12秒前
abc完成签到,获得积分10
12秒前
12秒前
天马行空完成签到,获得积分20
13秒前
13秒前
加薪奥利奥完成签到 ,获得积分10
15秒前
烟花应助echo采纳,获得20
16秒前
追寻咖啡豆完成签到 ,获得积分10
16秒前
Anna完成签到,获得积分10
16秒前
天马行空发布了新的文献求助10
17秒前
18秒前
小牛发布了新的文献求助20
20秒前
23秒前
科研通AI2S应助xelloss采纳,获得10
23秒前
24秒前
搞怪哑铃发布了新的文献求助10
25秒前
木子木子吱吱完成签到 ,获得积分10
25秒前
咕噜噜完成签到 ,获得积分10
26秒前
mobbbbbb完成签到,获得积分10
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
Ava应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
雨相所至应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228