Maize seed classification using hyperspectral image coupled with multi-linear discriminant analysis

高光谱成像 线性判别分析 人工智能 模式识别(心理学) 支持向量机 特征选择 判别式 计算机科学 变量消去 主成分分析 投影(关系代数) 降维 上下文图像分类 数学 特征(语言学) 图像(数学) 算法 哲学 语言学 推论
作者
Chao Xia,Sai Yang,Min Huang,Qibing Zhu,Ya Guo,Jianwei Qin
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:103: 103077-103077 被引量:76
标识
DOI:10.1016/j.infrared.2019.103077
摘要

Abstract Seed purity is an important parameter for evaluating seed quality and can be effectively studied by seed classification. Hyperspectral images between 400 and 1000 nm were acquired for 1632 maize seeds (17 varieties) for classifying seed varieties. Fourteen features including a spectral feature and 13 imaging features (i.e., 5 first-order and 8 s-order textural features) were extracted from the hyperspectral image data. A multi-linear discriminant analysis (MLDA) algorithm was developed to select the optimal wavelength and transform/reduce the classification features to improve the acquisition and processing speed of the hyperspectral images. Least square support vector machine was used to develop classification models based on MLDA with spectral features, imaging features, and combination of spectral and imaging features. The effects of MLDA, uninformative variable elimination (UVE) coupled with linear discriminant analysis (LDA), and successive projection algorithm (SPA) coupled with LDA were adopted. Experimental results indicate that the combination feature based on the wavelength selection algorithm of MLDA yielded high classification accuracy under the same number of wavelengths (varying between 5 and 15). Meanwhile, the classification model based on MLDA feature transformation/reduction method achieved superior classification accuracy of 99.13% over SPA coupled with LDA (90.31%) and UVE coupled with LDA (94.17%) and improved by 2.74% relative to that of the mean spectrum of the full wavelength model. The proposed method can be used effectively for seed identification and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
3秒前
琲珂发布了新的文献求助10
4秒前
4秒前
张本丁完成签到,获得积分10
4秒前
5秒前
欧欧欧导完成签到,获得积分10
6秒前
清爽妙竹应助科研通管家采纳,获得10
7秒前
清爽妙竹应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
清爽妙竹应助科研通管家采纳,获得10
8秒前
8秒前
清爽妙竹应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
nebula应助研友_楼灵煌采纳,获得10
10秒前
临床菜鸟发布了新的文献求助10
10秒前
子訡发布了新的文献求助10
10秒前
11秒前
石石石发布了新的文献求助10
12秒前
12秒前
桐桐应助琲珂采纳,获得10
13秒前
NexusExplorer应助nini采纳,获得10
14秒前
那日迈完成签到,获得积分10
16秒前
Flubird完成签到,获得积分10
16秒前
16秒前
执着银耳汤完成签到,获得积分10
17秒前
栗子发布了新的文献求助10
17秒前
19秒前
Kyrie完成签到 ,获得积分10
19秒前
田様应助Tangent90采纳,获得10
19秒前
21秒前
21秒前
meixinhu完成签到,获得积分10
21秒前
22秒前
石石石完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415